1. Akar, G. (2010). Different levels of reasoning in within state ratio conception and the conceptualization of rate: a possible example. In P. Brosnan, D. B. Erchick, & L. Flevares (Eds.), Proceedings of the 32nd annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 711–719). Columbus: The University of Ohio.
2. Battista, M. T. (2008). Representations and cognitive objects in modern school geometry. In M. K. Heid & G. W. Blume (Eds.), Research on technology and the teaching and learning of mathematics: Cases, and perspectives Volume 2. (pp. 341–362). Charlotte: Information Age Publishing, Inc.
3. Bell, L., Juersivich, N., Hammond, T. C., & Bell, R. L. (2012). The TPACK of dynamic representations. In R. Ronau, C. Rakes, & M. Niess (Eds.), Educational technology, teacher knowledge, and classroom impact (pp. 103–135). Hershey, PA: IGI Global.
4. Berk, D., Taber, S. B., Gorowara, C. C., & Poetzl, C. (2009). Developing prospective elementary teachers’ flexibility in the domain of proportional reasoning. Mathematical Thinking and Learning, 11(3), 113–135.
5. Bezuk, N., Bay-Williams, J., Clements, D. H., Martin, W. G., Aguirre, J., Boerst, T., et al. (2017). AMTE standards for mathematics teacher preparation.