A Material Removal Rate Model Considering Interfacial Micro-Contact Wear Behavior for Chemical Mechanical Polishing

Author:

Jeng Yeau-Ren1,Huang Pay-Yau1

Affiliation:

1. Department of Mechanical Engineering, National Chung Cheng University, 160 San-Hsing, Ming-Hsiung, Chia-Yi 621, Taiwan

Abstract

Chemical Mechanical Polishing (CMP) is a highly effective technique for planarizing wafer surfaces. Consequently, considerable research has been conducted into its associated material removal mechanisms. The present study proposes a CMP material removal rate model based upon a micro-contact model which considers the effects of the abrasive particles located between the polishing interfaces, thereby the down force applied on the wafer is carried both by the deformation of the polishing pad asperities and by the penetration of the abrasive particles. It is shown that the current theoretical results are in good agreement with the experimental data published previously. In addition to such operational parameters as the applied down force, the present study also considers consumable parameters rarely investigated by previous models based on the Preston equation, including wafer surface hardness, slurry particle size, and slurry concentration. This study also provides physical insights into the interfacial phenomena not discussed by previous models, which ignored the effects of abrasive particles between the polishing interfaces during force balancing.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3