Automatic Tolerance Analysis for Assessing Manufacturing Errors in Machining Plans

Author:

Fu Wentao1,Nelaturi Saigopal2

Affiliation:

1. Automated Design Laboratory, Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712 e-mail: ;

2. Automation for Engineered Systems, Intelligent Systems Laboratory, Palo Alto Research Center, Palo Alto, CA 94304 e-mail:

Abstract

In machining process planning, it is critical to ensure that the part created following the manufacturing steps complies with the designated design tolerances. However, the challenge is that manufacturing errors are stochastic in nature and are introduced at almost every step of executing a plan, for example, due to inaccuracy of tooling, misalignment of location, etc. Furthermore, these errors accumulate or “stack up” as the machining process progresses to inevitably produce a part that varies from the original design. The resulting variations should be within prescribed design tolerances for the manufactured part to be acceptable. In this work, we present a novel approach for assessing the manufacturing errors by representing variations of nominal features with transformations that are defined in terms of extents of the features' degrees-of-freedom (DOFs) within their design and manufacturing tolerance zones (MTZs). We show how the manufacturing errors stackup can be effectively represented by the composition and intersection of these transformations. Several examples representing scenarios of different complexities are demonstrated to show the applicability of our approach in assessing the influence of manufacturing errors on the design tolerances following a machining plan. Discussions of our approach are provided to address concerns with the accuracy and efficiency as well as to disclose the potential of our approach to enable a tolerance-aware process planning system.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3