Variation Analysis Method Based on Product Feature Information Network

Author:

Chen Liang1,Wei Naikun2,Zheng Yu1,Xi Juntong3

Affiliation:

1. Shanghai Jiao Tong University School of Mechanical Engineering, , 800 Dongchuan Road, Shanghai 200240 , China

2. Shanghai Jiaotong University China Shipbuilding Technology Research Institute, 851 South 2nd Zhongshan Road, Shanghai 200032 , China ; School of Mechanical Engineering, , 800 Dongchuan Road, Shanghai 200240 , China

3. Shanghai Jiao Tong University School of Mechanical Engineering, , 800 Dongchuan Road, Shanghai , China

Abstract

Abstract Dimensional and geometric variations are significant factors of products at the manufacturing stage. Because of these variations, the physical appearance or functionality of the final product may deviate from expectations. As of the present, research on variation analysis has been conducted at the feature level. To model the information and analyze the variation transfers of products, a graphical model is constructed by using the product feature and information. Through analysis of the relationship between the product and network model, a modeling process for the feature information network is proposed. Nodes, lines, and constraints in the network are defined in detail, and the dimension unit is defined to represent the dimension information within a part. Variations caused by connections between parts are divided into two categories of influence. Combining the dimension unit and the influence between parts, a variation analysis process is devised based on the proposed network model. To verify the effectiveness and feasibility of the proposed method, a case study is performed based on the grand assembly of a hull block. The result shows that the product can be modeled and the variation can be analyzed by the proposed network model.

Funder

Ministry of Industry and Information Technology of the People's Republic of China

National Natural Science Foundation of China

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3