A Data-Driven Methodology to Improve Tolerance Allocation Using Product Usage Data

Author:

Li Kangjie12,Gao Yicong2,Zheng Hao3,Tan Jianrongg2

Affiliation:

1. Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 310058, Hong Kong;

2. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China

3. Hangzhou Innovation Institute, Beihang University, Hangzhou 310000, China

Abstract

Abstract Industry 4.0, the fourth industrial revolution, puts forward new requirements for the sustainable service of products. With the recent advances in measurement technologies, global and local deformations in inaccessible areas can be monitored. Product usage data such as geometric deviation, position deviation, and angular deviation that lead to product functional performance degradation can be continuously collected during the product usage stage. These technologies provide opportunities to improve tolerance design by improving tolerance allocation using product usage data. The challenge lies in how to assess these deviations for identifying relevant field factors and reallocate the tolerance value. In this paper, a data-driven methodology based on the deviation for tolerance analysis is proposed to improve the tolerance allocation. A feature graph of a mechanical assembly is established based on the assembly relationship. The node representation in the feature graph is defined based on the unified Jacobian-torsor model and the node label is calculated by a synthetic evaluation method. A novel hierarchical graph attention networks (HGAT) is proposed to investigate hidden relations between nodes in the feature graph and calculate labels of all nodes. A modification necessity index (MNI) is defined for each tolerance between two nodes based on their labels. An identification of the to-be-modified tolerance method is proposed to specify the tolerance analysis target. A deviation difference matrix is constructed to calculate the MNI of each tolerance for identifying the to-be-modified tolerance value with high priorities for product improvement. The effectiveness of the proposed methodology is demonstrated through a case study for improving tolerance allocation of a press machine.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3