Nonlinear Assembly Tolerance Design for Spatial Mechanisms Based on Reliability Methods

Author:

Yin Yin1,Hong Nie2,Fei Feng3,Xiaohui Wei2,Huajin Ni4

Affiliation:

1. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China e-mail:

2. Professor State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China e-mail:

3. China Academy of Launch Vehicle Technology, Beijing 100076, China e-mail:

4. China COMAC Shanghai Aircraft Design and Research Institute, Shanghai 201210, China e-mail:

Abstract

Assembly tolerance design for spatial mechanisms is a complex engineering problem that involves a highly nonlinear dimension chain equation and challenges in simplifying the spatial mechanism matrix equation. To address the nonlinearity of the problem and the difficulty of simplifying the dimension chain equation, this paper investigates the use of the Rackwitz–Fiessler (R–F) reliability analysis method and several surrogate model methods, respectively. The tolerance analysis results obtained for a landing gear assembly problem using the R–F method and the surrogate model methods indicate that compared with the extremum method and the probability method, the R–F method allows more accurate and efficient computation of the successful assembly rate, a reasonable tolerance allocation design, and cost reductions of 37% and 16%, respectively. Moreover, the surrogate-model-based computation results show that the support vector machine (SVM) method offers the highest computational accuracy among the three investigated surrogate methods but is more time consuming, whereas the response surface method and the back propagation (BP) neural network method offer relatively low accuracy but higher calculation efficiency. Overall, all of the surrogate model methods provide good computational accuracy while requiring far less time for analysis and computation compared with the simplification of the dimension chain equation or the Monte Carlo method.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3