Theoretical Model of Buoyancy-Induced Heat Transfer in Closed Compressor Rotors

Author:

Tang Hui1,Michael Owen J.1

Affiliation:

1. Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK e-mail:

Abstract

The cavities between the rotating compressor disks in aero-engines are open, and there is an axial throughflow of cooling air in the annular space between the center of the disks and the central rotating compressor shaft. Buoyancy-induced flow occurs inside these open rotating cavities, with an exchange of heat and momentum between the axial throughflow and the air inside the cavity. However, even where there is no opening at the center of the compressor disks—as is the case in some industrial gas turbines—buoyancy-induced flow can still occur inside the closed rotating cavities. The closed cavity also provides a limiting case for an open cavity when the axial clearance between the cobs—the bulbous hubs at the center of compressor disks—is reduced to zero. Bohn and his co-workers at the University of Aachen have studied three different closed-cavity geometries, and they have published experimental data for the case where the outer cylindrical surface is heated and the inner surface is cooled. In this paper, a buoyancy model is developed in which it is assumed that the heat transfer from the cylindrical surfaces is analogous to laminar free convection from horizontal plates, with the gravitational acceleration replaced by the centripetal acceleration. The resulting equations, which have been solved analytically, show how the Nusselt numbers depend on both the geometry of the cavity and its rotational speed. The theoretical solutions show that compressibility effects in the core attenuate the Nusselt numbers, and there is a critical Reynolds number at which the Nusselt number will be a maximum. For the three cavities tested, the predicted Nusselt numbers are in generally good agreement with the measured values of Bohn et al. over a large range of Raleigh numbers up to values approaching 1012. The fact that the flow remains laminar even at these high Rayleigh numbers is attributed to the Coriolis accelerations suppressing turbulence in the cavity, which is consistent with recently published results for open rotating cavities.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3