Experimental and Theoretical Investigations of Heat Transfer in Closed Gas-Filled Rotating Annuli

Author:

Bohn D.1,Deuker E.1,Emunds R.1,Gorzelitz V.1

Affiliation:

1. Institute of Steam and Gas Turbines, Technical University of Aachen, Aachen, Federal Republic of Germany

Abstract

The prediction of the temperature distribution in a gas turbine rotor containing closed, gas-filled cavities, for example in between two disks, has to account for the heat transfer conditions encountered inside these cavities. In an entirely closed annulus, forced convection is not present, but a strong natural convection flow exists, induced by a nonuniform density distribution in the centrifugal force field. Experimental investigations have been made to analyze the convective heat transfer in closed, gas-filled annuli rotating around their horizontal axes. The experimental setup is designed to establish a pure centripetal heat flux inside these annular cavities (hot outer, and cold inner cylindrical wall, thermally insulated side walls). The experimental investigations have been carried out for several geometries varying the Rayleigh number in a range usually encountered in cavities of turbine rotors (107 < Ra < 1012). The convective heat flux induced for Ra =1012 was found to be a hundred times larger compared to the only conductive heat flux. By inserting radial walls the annulus is divided into 45 deg sections and the heat transfer increases considerably. A computer program to simulate flow and heat transfer in closed rotating cavities has been developed and tested successfully for annuli with isothermal side walls with different temperatures giving an axial heat flux. For the centripetal heat flux configuration, three-dimensional steady-state calculations of the sectored annulus were found to be consistent with the experimental results. Nevertheless, analysis of unsteady calculations show that the flow can become unstable. This is analogous to the Be´nard problem in the gravitational field.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3