Experimental Investigation of Transient Flow Phenomena in Rotating Compressor Cavities

Author:

Pernak Mikolaj J.1,Nicholas Tom E. W.1,Williams Jake T.2,Jackson Richard W.1,Tang Hui1,Lock Gary D.1,Scobie James A.1

Affiliation:

1. University of Bath Department of Mechanical Engineering, , Bath BA2 7AY , UK

2. Rolls-Royce plc , Filton, Bristol BS34 7QE , UK

Abstract

Abstract The clearance of compressor blade tips during aero-engine accelerations is an important design issue for next-generation engine architectures. The transient clearance depends on the radial expansion of the compressor discs, which is directly coupled to conjugate heat transfer in co-rotating discs governed by unsteady and unstable buoyancy-induced flow. This paper discusses an experimental and modeling study using the Bath Compressor Cavity Rig, which simulates a generic axial compressor at fluid-dynamically scaled conditions. The rig was specifically designed to generate heat transfer of practical interest to the engine designer and validate computational codes. This work presents the first study of the fundamental fluid dynamic and heat transfer phenomena under transient conditions. The rotating flow structure was seen to be characterized by coherent pairs of cyclonic/anticyclonic vortex pairs; the strength, rotational frequency, stability, and number of these unsteady structures changed with changing rotational Reynolds and Grashof numbers during the transients. These structures, measured by unsteady pressure transducers in the rotating frame of reference, were only present when the flow in the rotating cavity was dominated by buoyancy. Experimental correlations of both Nusselt number and radial mass flowrate in the rotating core were correlated against Grashof number. Remarkably, the experiments revealed a consistent correlation for both steady-state and transient conditions over a wide range of Gr. The results have a practical application to thermo-mechanical models for engine design.

Funder

Engineering and Physical Sciences Research Council

Rolls-Royce

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3