Affiliation:
1. Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK
Abstract
The Ekman-layer equations, which have previously been solved for isothermal source–sink flow in a rotating cavity, are derived for buoyancy-induced flow. Although the flow in the inviscid core is three-dimensional and unsteady, it is assumed that the flow in the Ekman layers is axisymmetric and steady; and, as for source–sink flow, the average mass flow rate in the Ekman layers is assumed to be invariant with radius. In addition, it is assumed that the flow in the core is adiabatic, and consequently the core temperature increases with radius and with rotational speed. Approximate solutions are obtained for laminar flow, and it is shown that the Nusselt numbers for the rotating disks and the mass flow rate in the Ekman layers are proportional to Grc1/4, where Grc is a Grashof number based on the rotational Reynolds number and the temperature difference between the disk and the core. The equation for the Nusselt numbers, which includes two empirical constants, depends strongly on the radial distribution of the temperature of the disks.
Reference14 articles.
1. Source–Sink Flow Inside a Rotating Cylindrical Cavity;J. Fluid Mech.,1985
2. Review of Buoyancy-Induced Flow in Rotating Cavities;ASME J. Turbomach.,2015
3. Flow and Heat Transfer in Rotating Disc Systems,1995
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献