Analysis of Cavity Disk Heat Transfer by Solving Inverse Heat Transfer Problem

Author:

Diemel E.1,Odenbach S.1,Uffrecht W.1,Rey Villazon J.2,Guijarro Valencia A.2

Affiliation:

1. Technische Universitét Dresden Institute of Mechatronic Engineering, , 01062 Dresden , Germany

2. GE Aerospace , 85748 Garching , Germany

Abstract

Abstract The flow and heat transfer within compressor rotor cavities of aero-engines is a conjugate problem. The operating conditions buoyancy forces, caused by radial temperature difference between the cold throughflow and the hotter shroud, can influence the amount of entrained air significantly. By this, the heat transfer depends on the radial temperature gradient of the cavity walls, and in turn, the disk temperatures are dependent on the heat transfer. In this article, disk Nusselt numbers are calculated in reference to the air inlet temperature and in comparison to a modeled local air temperature inside the cavity. The local disk heat flux is determined from measured steady-state surface temperatures by solving the inverse heat transfer problem in an iterative procedure. The conduction equation is solved on a 2D mesh using a validated finite element approach, and the heat flux confidence intervals are calculated with a stratified Monte Carlo approach. An estimate for the amount of air entering into the cavity is calculated by a simplified heat balance. The major influences on the Nusselt number were found to be the mass flowrate entering the cavity and the density of the fluid inside the cavity.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3