Stratified and Buoyancy-Induced Flow in Closed Compressor Rotors

Author:

Lock Gary D.1,Jackson Richard W.1,Pernak Mikolaj1,Pountney Oliver J.1,Sangan Carl M.1,Owen J. Michael1,Tang Hui1,Scobie James A.1

Affiliation:

1. University of Bath Department of Mechanical Engineering, , Bath BA2 7AY , UK

Abstract

Abstract The radial growth of compressor discs is strongly influenced by conjugate heat transfer between conduction in the co-rotating discs and buoyancy-driven convection in the rotating fluid core between the discs. An accurate prediction of metal temperatures of these discs is an important issue in thermo-mechanical design, where blade-tip clearances must be controlled carefully to ensure safety and efficiency under all operating conditions. This paper presents an experimental study of the fluid dynamics and heat transfer in a closed rotating cavity, comparing results with theoretical models and introducing a new compressibility parameter χ. At large values of χ, where compressibility effects are significant, the air temperature approaches that of the shroud; such conditions suppress buoyancy effects and the flow in the rotating cavity becomes stratified, with convection replaced by conduction inside the fluid core. There are important practical consequences of stratification with significant differences in temperature distributions and stresses inside compressor discs. The influence of χ is also shown on the radial temperature distributions for the discs and on the shroud heat transfer correlations, which are compared qualitatively with previously published data collected where the effects of compressibility are relatively small. The experiments reveal that there is a critical value of χ where the convective heat flux to the shroud is zero. The radial distribution of disc temperature was that expected from pure conduction in a cylinder. A new heat transfer correlation based on measured shroud heat flux and the theoretical core temperature is presented. The unsteady flow characteristics in the cavity were also investigated, identifying coherent rotating structures across a range of experimental conditions. These cyclonic/anti-cyclonic vortex pairs generate the nondimensional circumferential pressure difference necessary for the radial outflow (of cold fluid) and inflow (of hot fluid) through the rotating core. The experiments show that the magnitude of these pressure variations can be correlated against Grashof number and at high values of χ the structures do not exist. The combined experimental and theoretical results will be of practical interest to engine designers and for the validation of computational models.

Funder

Engineering and Physical Sciences Research Council

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3