A Study on the Effect of Epoxy Molding Compound (EMC) Rheology During Encapsulation of Stacked-CHIP Scale Packages (S-CSP)

Author:

Abdullah M. Khalil1,Abdullah M.Z.2,Mujeebu M.A.2,Kamaruddin S.2,Ariff Z.M.3

Affiliation:

1. School of Mechanical Engineering, Universiti Sains Malaysia Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia,

2. School of Mechanical Engineering, Universiti Sains Malaysia Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia

3. School of Material and Mineral Resources, Universiti Sains Malaysia Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia

Abstract

The numerical and experimental investigations of three-dimensional (3-D) mold filling during encapsulation process in stacked-chip scale package (S-CSP) are presented. The finite difference method (FDM) based on Navier—Stokes equations has been employed for the flow analysis in the mold cavity. The mold flow is assumed to be non-Newtonian and non-isothermal. The proposed models can take care of polymer rheology with cure effect (Castro—Macosko model) and without cure effect (Cross model). A package with five, six, and seven overhang stacking dies without wire bonds is considered for simulation. The epoxy molding compound (EMC) used is HITACHI CEL-9200. The effects of gap between die top and mold cap surface, and between adjacent dies on flow rheology are analyzed and presented. The flow retardation in the limitation region (gap region) and smooth flow in the free region of the package is being predicted. Higher initial conversion of EMC demonstrated higher viscosity and slower melt front advancement especially under the overhang area of same die stacking region and critical gap between the die and mold cap. The void mechanism occurred due to unbalanced mold flow and critical gap clearance. The simulation results are verified with those obtained from a typical electronic industry and found in good agreement. From the results; the Castro—Macosko model is found to be more stable and reliable on the flow rheology.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Reference24 articles.

1. Tummala, R.R.( 2001). Fundamentals of Microsystems Packaging, pp. 44-79, McGraw Hill, Singapore.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3