A 28nm 29.2TFLOPS/W BF16 and 36.5TOPS/W INT8 Reconfigurable Digital CIM Processor with Unified FP/INT Pipeline and Bitwise In-Memory Booth Multiplication for Cloud Deep Learning Acceleration
Author:
Affiliation:
1. Tsinghua University,Beijing,China
2. University of California,Santa Barbara,CA
Funder
National Key R&D Program
NSFC
Beijing S&T Project
Beijing Innovation Center for Future Chip
Publisher
IEEE
Link
http://xplorestaging.ieee.org/ielx7/9731529/9731102/09731762.pdf?arnumber=9731762
Reference5 articles.
1. A 13.7 TFLOPS/W Floating-point DNN Processor using Heterogeneous Computing Architecture with Exponent-Computing-in-Memory
2. An 89TOPS/W and 16.3TOPS/mm2All-Digital SRAM-Based Full-Precision Compute-In-Memory Macro in 22nm for Machine-Learning Edge Applications;chih;ISSCC,2021
3. A 40nm 4.81 TFLOPS/W 8b Floating-Point Training Processor for Non-Sparse Neural Networks Using Shared Exponent Bias and 24-Way Fused Multiply-Add Tree;park;ISSCC,2021
4. 9.1 A 7nm 4-Core AI Chip with 25.6TFLOPS Hybrid FP8 Training, 102.4TOPS INT4 Inference and Workload-Aware Throttling
5. A 2.75-to-75.9TOPS/W Computing-in-Memory NN Processor Supporting Set-Associate Block-Wise Zero Skipping and Ping-Pong CIM with Simultaneous Computation and Weight Updating;yue;ISSCC,2021
Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Dynamic Execution Neural Network Processor for Fine-Grained Mixed-Precision Model Training Based on Online Quantization Sensitivity Analysis;IEEE Journal of Solid-State Circuits;2024-09
2. A 28-nm 64-kb 31.6-TFLOPS/W Digital-Domain Floating-Point-Computing-Unit and Double-Bit 6T-SRAM Computing-in-Memory Macro for Floating-Point CNNs;IEEE Journal of Solid-State Circuits;2024-09
3. iMCU: A 28-nm Digital In-Memory Computing-Based Microcontroller Unit for TinyML;IEEE Journal of Solid-State Circuits;2024-08
4. DCIM-GCN: Digital Computing-in-Memory Accelerator for Graph Convolutional Network;IEEE Transactions on Circuits and Systems I: Regular Papers;2024-06
5. Toggle Rate Aware Quantization Model Based on Digital Floating-Point Computing-In-Memory Architecture;IEEE Transactions on Circuits and Systems II: Express Briefs;2024-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3