Variability due to climate and chemistry in observations of oxygenated Earth-analogue exoplanets

Author:

Cooke G J1ORCID,Marsh D R12,Walsh C1,Rugheimer S34,Villanueva G L5

Affiliation:

1. School of Physics and Astronomy, University of Leeds , Leeds LS2 9JT, UK

2. National Center for Atmospheric Research , Boulder CO 80301, USA

3. University Oxford, Atmospheric, Oceanic, and Planetary Physics Department, Clarendon Laboratory , Sherrington Road, Oxford OX1 3PU, UK

4. Dept of Physics and Astronomy, York University , 4700 Keele Street, North York, Ontario 3MJ 1P3, Canada

5. NASA Goddard Space Flight Center, Solar System Exploration Division , 8800 Greenbelt Road, Greenbelt, MD 20771, USA

Abstract

ABSTRACT The Great Oxidation Event was a period during which Earth’s atmospheric oxygen (O2) concentrations increased from ∼10−5 times its present atmospheric level (PAL) to near modern levels, marking the start of the Proterozoic geological eon 2.4 billion years ago. Using WACCM6, an Earth System Model, we simulate the atmosphere of Earth-analogue exoplanets with O2 mixing ratios between 0.1 and 150 per cent PAL. Using these simulations, we calculate the reflection spectra over multiple orbits using the Planetary Spectrum Generator. We highlight how observer angle, albedo, chemistry, and clouds affect the simulated observations. We show that inter-annual climate variations, as well short-term variations due to clouds, can be observed in our simulated atmospheres with a telescope concept such as LUVOIR or HabEx. Annual variability and seasonal variability can change the planet’s reflected flux (including the reflected flux of key spectral features such as O2 and H2O) by up to factors of 5 and 20, respectively, for the same orbital phase. This variability is best observed with a high-throughput coronagraph. For example, HabEx (4 m) with a starshade performs up to a factor of two times better than a LUVOIR B (6 m) style telescope. The variability and signal-to-noise ratio of some spectral features depends non-linearly on atmospheric O2 concentration. This is caused by temperature and chemical column depth variations, as well as generally increased liquid and ice cloud content for atmospheres with O2 concentrations of <1 per cent PAL.

Funder

Science and Technology Facilities Council

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3