The Importance of the Upper Atmosphere to CO/O2 Runaway on Habitable Planets Orbiting Low-mass Stars

Author:

Ranjan SukritORCID,Schwieterman Edward W.ORCID,Leung MichaelaORCID,Harman Chester E.ORCID,Hu RenyuORCID

Abstract

Abstract Efforts to spectrally characterize the atmospheric compositions of temperate terrestrial exoplanets orbiting M dwarf stars with JWST are now underway. Key molecular targets of such searches include O2 and CO, which are potential indicators of life. Recently, it was proposed that CO2 photolysis generates abundant (≳0.1 bar) abiotic O2 and CO in the atmospheres of habitable M dwarf planets with CO2-rich atmospheres, constituting a strong false positive for O2 as a biosignature and further complicating efforts to use CO as a diagnostic of surface biology. Importantly, this implied that TRAPPIST-1e and TRAPPIST-1f, now under observation with JWST, would abiotically accumulate abundant O2 and CO, if habitable. Here, we use a multi-model approach to reexamine photochemical O2 and CO accumulation on planets orbiting M dwarf stars. We show that photochemical O2 remains a trace gas on habitable CO2-rich M dwarf planets, with earlier predictions of abundant O2 and CO due to an atmospheric model top that was too low to accurately resolve the unusually high CO2 photolysis peak on such worlds. Our work strengthens the case for O2 as a biosignature gas, and affirms the importance of CO as a diagnostic of photochemical O2 production. However, observationally relevant false-positive potential remains, especially for O2's photochemical product O3, and further work is required to confidently understand O2 and O3 as biosignature gases on M dwarf planets.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3