The impact of ozone on Earth-like exoplanet climate dynamics: the case of Proxima Centauri b

Author:

De Luca P1ORCID,Braam M234ORCID,Komacek T D5ORCID,Hochman A6ORCID

Affiliation:

1. Department of Earth Sciences, Barcelona Supercomputing Center (BSC) , Barcelona, 08034 , Spain

2. School of GeoSciences, The University of Edinburgh , Edinburgh, EH9 3FF , UK

3. Centre for Exoplanet Science, The University of Edinburgh , Edinburgh, EH9 3FD , UK

4. Institute of Astronomy , KU Leuven, Leuven, B-3001 , Belgium

5. Department of Astronomy, University of Maryland , College Park, MD, 20742 , USA

6. Fredy and Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem , Jerusalem, 9190401 , Israel

Abstract

ABSTRACT The emergence of the JWST and the development of other advanced observatories (e.g. ELTs, LIFE, and HWO) marks a pivotal moment in the quest to characterize the atmospheres of Earth-like exoplanets. Motivated by these advancements, we conduct theoretical explorations of exoplanetary atmospheres, focusing on refining our understanding of planetary climate and habitability. Our study investigates the impact of ozone on the atmosphere of Proxima Centauri b in a synchronous orbit, utilizing coupled climate chemistry model simulations and dynamical systems theory. The latter quantifies compound dynamical metrics in phase space through the inverse of co-persistence (θ) and co-dimension (d), of which low values correspond to stable atmospheric states. Initially, we scrutinized the influence of ozone on temperature and wind speed. Including interactive ozone [i.e. coupled atmospheric (photo)chemistry] reduces the hemispheric difference in temperature from 68 °K to 64 °K, increases (∼+7 °K) atmospheric temperature at an altitude range of ∼20–50 km, and increases variability in the compound dynamics of temperature and wind speed. Moreover, with interactive ozone, wind speed during highly temporally stable states is weaker than for unstable ones, and ozone transport to the nightside gyres during unstable states is enhanced compared to stable ones (∼+800 DU). We conclude that including interactive ozone significantly influences Earth-like exoplanets' chemistry and climate dynamics. This study establishes a novel pathway for comprehending the influence of photochemical species on the climate dynamics of potentially habitable Earth-like exoplanets. We envisage an extension of this framework to other exoplanets.

Funder

European Union

Israel Science Foundation

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3