Description and evaluation of the UKCA stratosphere–troposphere chemistry scheme (StratTrop vn 1.0) implemented in UKESM1
-
Published:2020-03-17
Issue:3
Volume:13
Page:1223-1266
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Archibald Alexander T.ORCID, O'Connor Fiona M., Abraham Nathan LukeORCID, Archer-Nicholls ScottORCID, Chipperfield Martyn P.ORCID, Dalvi Mohit, Folberth Gerd A.ORCID, Dennison FraserORCID, Dhomse Sandip S.ORCID, Griffiths Paul T.ORCID, Hardacre Catherine, Hewitt Alan J.ORCID, Hill Richard S., Johnson Colin E., Keeble JamesORCID, Köhler Marcus O.ORCID, Morgenstern OlafORCID, Mulcahy Jane P.ORCID, Ordóñez CarlosORCID, Pope Richard J., Rumbold Steven T., Russo Maria R., Savage Nicholas H.ORCID, Sellar AlistairORCID, Stringer MarcORCID, Turnock Steven T.ORCID, Wild OliverORCID, Zeng GuangORCID
Abstract
Abstract. Here we present a description of the UKCA StratTrop chemical mechanism, which is used in the UKESM1 Earth system model for CMIP6. The StratTrop chemical mechanism is a merger of previously well-evaluated tropospheric and stratospheric mechanisms, and we provide results from a series of bespoke integrations to assess the overall performance of the model. We find that the StratTrop scheme performs well when compared to a wide
array of observations. The analysis we present here focuses on key
components of atmospheric composition, namely the performance of the model
to simulate ozone in the stratosphere and troposphere and constituents that
are important for ozone in these regions. We find that the results obtained
for tropospheric ozone and its budget terms from the use of the StratTrop
mechanism are sensitive to the host model; simulations with the same
chemical mechanism run in an earlier version of the MetUM host model show a
range of sensitivity to emissions that the current model does not fall
within. Whilst the general model performance is suitable for use in the UKESM1 CMIP6 integrations, we note some shortcomings in the scheme that future targeted studies will address.
Funder
Horizon 2020 Framework Programme
Publisher
Copernicus GmbH
Reference163 articles.
1. Acosta Navarro, J. C., Smolander, S., Struthers, H., Zorita, E., Ekman, A.
M. L., Kaplan, J. O., Guenther, A., Arneth, A., and Riipinen, I.: Global
emissions of terpenoid VOCs from terrestrial vegetation in the last millennium, J. Geophys. Res.-Atmos., 119, 6867–6885, https://doi.org/10.1002/2013JD021238, 2014. 2. Allen, D. J. and Pickering, K. E.: Evaluation of lightning flash rate parametrizations for use in a global chemical transport model, J. Geophys. Res., 107, 4711, https://doi.org/10.1029/2002JD002066, 2002. 3. Arakawa, A. and Lamb, V. R.: Computational design of the basic dynamic
processes of the UCLA general circulation model, Methods Comput. Phys., 17,
173–265, 1977. 4. Archibald, A. T., Levine, J. G., Abraham, N. L., Cooke, M. C., Edwards, P. M., Heard, D. E., Jenkin, M. E., Karunaharan, A., Pike, R. C., Monks, P. S., Shallcross, D. E., Telford,P. J., Whalley, L. K., and Pyle, J. A.: Impacts of HOx regeneration and recycling in the
oxidation of isoprene: Consequences for the composition of past, present and
future atmospheres, Geophys. Res. Lett., 38, L05804, https://doi.org/10.1029/2010GL046520, 2011. 5. Arneth, A., Niinemets, Ü., Pressley, S., Bäck, J., Hari, P., Karl, T., Noe, S., Prentice, I. C., Serça, D., Hickler, T., Wolf, A., and Smith, B.: Process-based estimates of terrestrial ecosystem isoprene emissions: incorporating the effects of a direct CO2-isoprene interaction, Atmos. Chem. Phys., 7, 31–53, https://doi.org/10.5194/acp-7-31-2007, 2007.
Cited by
121 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|