Lethal Surface Ozone Concentrations Are Possible on Habitable Zone Exoplanets

Author:

Cooke G. J.ORCID,Marsh D. R.ORCID,Walsh C.ORCID,Sainsbury-Martinez F.ORCID

Abstract

Abstract Ozone (O3) is important for the survival of life on Earth because it shields the surface from ionizing ultraviolet radiation. However, the existence of O3 in Earth’s atmosphere is not always beneficial. Resulting from anthropogenic activity, O3 exists as a biologically harmful pollutant at the surface when it forms in the presence of sunlight and other pollutants. As a strong oxidizer, O3 can be lethal to several different organisms; thus, when assessing the potential habitability of an exoplanet, a key part is determining whether toxic gases could be present at its surface. Using the Whole Atmosphere Community Climate Model version 6 (WACCM6; a three-dimensional chemistry-climate model), 12 atmospheric simulations of the terrestrial exoplanet TRAPPIST-1 e are performed with a variety of O2 concentrations and assuming two different stellar spectra proposed in the literature. Four atmospheric simulations of the exoplanet Proxima Centauri b are also included. Some scenarios for both exoplanets exhibit time-averaged surface O3 mixing ratios exceeding harmful levels of 40 ppbv, with 2120 ppbv the maximum concentration found in the cases simulated. These concentrations are toxic and can be fatal to most life on Earth. In other scenarios O3 remains under harmful limits over a significant fraction of the surface, despite there being present regions that may prove inhospitable. In the case in which O3 is detected in a terrestrial exoplanet’s atmosphere, determining the surface concentration is an important step when evaluating a planet’s habitability.

Funder

UKRI ∣ Science and Technology Facilities Council

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3