Large Interferometer For Exoplanets (LIFE)

Author:

Alei EleonoraORCID,Konrad Björn S.ORCID,Angerhausen DanielORCID,Grenfell John Lee,Mollière Paul,Quanz Sascha P.ORCID,Rugheimer SarahORCID,Wunderlich Fabian,

Abstract

Context. An important future goal in exoplanetology is to detect and characterize potentially habitable planets. Concepts for future space missions have already been proposed: from a large UV-optical-infrared space mission for studies in reflected light, to the Large Interferometer for Exoplanets (LIFE) for analyzing the thermal portion of the planetary spectrum. Using nulling interferometry, LIFE will allow us to constrain the radius and effective temperature of (terrestrial) exoplanets, as well as provide unique information about their atmospheric structure and composition. Aims. We explore the potential of LIFE for characterizing emission spectra of Earth at various stages of its evolution. This allows us (1) to test the robustness of Bayesian atmospheric retrieval frameworks when branching out from a modern Earth scenario while still remaining in the realm of habitable (and inhabited) exoplanets, and (2) to refine the science requirements for LIFE for the detection and characterization of habitable, terrestrial exoplanets. Methods. We performed Bayesian retrievals on simulated spectra of eight different scenarios, which correspond to cloud-free and cloudy spectra of four different epochs of the evolution of the Earth. Assuming a distance of 10 pc and a Sun-like host star, we simulated observations obtained with LIFE using its simulator LIFEsim, considering all major astrophysical noise sources. Results. With the nominal spectral resolution (R = 50) and signal-to-noise ratio (assumed to be S/N = 10 at 11.2 μm), we can identify the main spectral features of all the analyzed scenarios (most notably CO2, H2O, O3, and CH4). This allows us to distinguish between inhabited and lifeless scenarios. Results suggest that O3 and CH4 in particular yield an improved abundance estimate by doubling the S/N from 10 to 20. Neglecting clouds in the retrieval still allows for a correct characterization of the atmospheric composition. However, correct cloud modeling is necessary to avoid biases in the retrieval of the correct thermal structure. Conclusions. From this analysis, we conclude that the baseline requirements for R and S/N are sufficient for LIFE to detect O3 and CH4 in the atmosphere of an Earth-like planet with an O2 abundance of around 2% in volume mixing ratio. Doubling the S/N would allow a clearer detection of these species at lower abundances. This information is relevant in terms of the LIFE mission planning. We also conclude that cloud-free retrievals of cloudy planets can be used to characterize the atmospheric composition of terrestrial habitable planets, but not the thermal structure of the atmosphere. From the inter-model comparison performed, we deduce that differences in the opacity tables (caused by, e.g., a different line wing treatment) may be an important source of systematic errors.

Funder

National Centre of Competence in Research PlanetS supported by the Swiss National Science Foundation

European Union’s Horizon 2020 research and innovation program

Publisher

EDP Sciences

Subject

General Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3