A comparison of exoplanet spectroscopic retrieval tools

Author:

Barstow Joanna K1ORCID,Changeat Quentin1,Garland Ryan2,Line Michael R3,Rocchetto Marco1,Waldmann Ingo P1

Affiliation:

1. Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK

2. Atmospheric, Oceanic and Planetary Physics, Clarendon Laboratory, University of Oxford, Keble Road, Oxford OX1 3PU, UK

3. School of Earth and Space Exploration, Arizona State University, PO Box 871404, Tempe, AZ 85281, USA

Abstract

ABSTRACT Over the last several years, spectroscopic observations of transiting exoplanets have begun to uncover information about their atmospheres, including atmospheric composition and indications of the presence of clouds and hazes. Spectral retrieval is the leading technique for interpretation of transmission spectra and is employed by several teams using a variety of forward models and parameter estimation algorithms. However, different model suites have mostly been used in isolation and so it is unknown whether the results from each are comparable. As we approach the launch of the James Webb Space Telescope, we anticipate advances in wavelength coverage, precision, and resolution of transit spectroscopic data, so it is important that the tools that will be used to interpret these information-rich spectra are validated. To this end, we present an intermodel comparison of three retrieval suites: TauREx, nemesis, and chimera. We demonstrate that the forward model spectra are in good agreement (residual deviations on the order of 20–40 ppm), and discuss the results of cross-retrievals among the three tools. Generally, the constraints from the cross-retrievals are consistent with each other and with input values to within 1σ. However, for high precision scenarios with error envelopes of order 30 ppm, subtle differences in the simulated spectra result in discrepancies between the different retrieval suites, and inaccuracies in retrieved values of several σ. This can be considered analogous to substantial systematic/astrophysical noise in a real observation, or errors/omissions in a forward model such as molecular line list incompleteness or missing absorbers.

Funder

European Research Council

Horizon 2020

Seventh Framework Programme

Science and Technology Facilities Council

NASA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3