Methods for Incorporating Model Uncertainty into Exoplanet Atmospheric Analysis

Author:

Nixon Matthew C.ORCID,Welbanks LuisORCID,McGill PeterORCID,Kempton Eliza M.-R.ORCID

Abstract

Abstract A key goal of exoplanet spectroscopy is to measure atmospheric properties, such as abundances of chemical species, in order to connect them to our understanding of atmospheric physics and planet formation. In this new era of high-quality JWST data, it is paramount that these measurement methods are robust. When comparing atmospheric models to observations, multiple candidate models may produce reasonable fits to the data. Typically, conclusions are reached by selecting the best-performing model according to some metric. This ignores model uncertainty in favor of specific model assumptions, potentially leading to measured atmospheric properties that are overconfident and/or incorrect. In this paper, we compare three ensemble methods for addressing model uncertainty by combining posterior distributions from multiple analyses: Bayesian model averaging, a variant of Bayesian model averaging using leave-one-out predictive densities, and stacking of predictive distributions. We demonstrate these methods by fitting the Hubble Space Telescope (HST) + Spitzer transmission spectrum of the hot Jupiter HD 209458b using models with different cloud and haze prescriptions. All of our ensemble methods lead to uncertainties on retrieved parameters that are larger but more realistic and consistent with physical and chemical expectations. Since they have not typically accounted for model uncertainty, uncertainties of retrieved parameters from HST spectra have likely been underreported. We recommend stacking as the most robust model combination method. Our methods can be used to combine results from independent retrieval codes and from different models within one code. They are also widely applicable to other exoplanet analysis processes, such as combining results from different data reductions.

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. pop-cosmos: A Comprehensive Picture of the Galaxy Population from COSMOS Data;The Astrophysical Journal Supplement Series;2024-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3