Long-range transport of stratospheric aerosols in the Southern Hemisphere following the 2015 Calbuco eruption

Author:

Bègue Nelson,Vignelles Damien,Berthet GwenaëlORCID,Portafaix Thierry,Payen Guillaume,Jégou FabriceORCID,Benchérif Hassan,Jumelet Julien,Vernier Jean-Paul,Lurton Thibaut,Renard Jean-Baptiste,Clarisse LievenORCID,Duverger Vincent,Posny FrançoiseORCID,Metzger Jean-Marc,Godin-Beekmann Sophie

Abstract

Abstract. After 43 years of inactivity, the Calbuco volcano, which is located in the southern part of Chile, erupted on 22 April 2015. The space–time evolutions (distribution and transport) of its aerosol plume are investigated by combining satellite (CALIOP, IASI, OMPS), in situ aerosol counting (LOAC OPC) and lidar observations, and the MIMOSA advection model. The Calbuco aerosol plume reached the Indian Ocean 1 week after the eruption. Over the Reunion Island site (21° S, 55.5° E), the aerosol signal was unambiguously enhanced in comparison with background conditions, with a volcanic aerosol layer extending from 18 to 21 km during the May–July period. All the data reveal an increase by a factor of  ∼  2 in the SAOD (stratospheric aerosol optical depth) with respect to values observed before the eruption. The aerosol mass e-folding time is approximately 90 days, which is rather close to the value ( ∼  80 days) reported for the Sarychev eruption. Microphysical measurements obtained before, during, and after the eruption reflecting the impact of the Calbuco eruption on the lower stratospheric aerosol content have been analyzed over the Reunion Island site. During the passage of the plume, the volcanic aerosol was characterized by an effective radius of 0.16 ± 0.02 µm with a unimodal size distribution for particles above 0.2 µm in diameter. Particle concentrations for sizes larger than 1 µm are too low to be properly detected by the LOAC OPC. The aerosol number concentration was  ∼  20 times higher that observed before and 1 year after the eruption. According to OMPS and lidar observations, a tendency toward conditions before the eruption was observed by April 2016. The volcanic aerosol plume is advected eastward in the Southern Hemisphere and its latitudinal extent is clearly bounded by the subtropical barrier and the polar vortex. The transient behavior of the aerosol layers observed above Reunion Island between May and July 2015 reflects an inhomogeneous spatio-temporal distribution of the plume, which is controlled by the localization of these dynamical barriers.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference96 articles.

1. Arfeuille, F., Luo, B. P., Heckendorn, P., Weisenstein, D., Sheng, J. X., Rozanov, E., Schraner, M., Brönnimann, S., Thomason, L. W., and Peter, T.: Modeling the stratospheric warming following the Mt. Pinatubo eruption: uncertainties in aerosol extinctions, Atmos. Chem. Phys., 13, 11221–11234, https://doi.org/10.5194/acp-13-11221-2013, 2013.

2. Baray, J.-L., Courcoux, Y., Keckhut, P., Portafaix, T., Tulet, P., Cammas, J.-P., Hauchecorne, A., Godin Beekmann, S., De Mazière, M., Hermans, C., Desmet, F., Sellegri, K., Colomb, A., Ramonet, M., Sciare, J., Vuillemin, C., Hoareau, C., Dionisi, D., Duflot, V., Vérèmes, H., Porteneuve, J., Gabarrot, F., Gaudo, T., Metzger, J.-M., Payen, G., Leclair de Bellevue, J., Barthe, C., Posny, F., Ricaud, P., Abchiche, A., and Delmas, R.: Maïdo observatory: a new high-altitude station facility at Reunion Island (21° S, 55° E) for long-term atmospheric remote sensing and in situ measurements, Atmos. Meas. Tech., 6, 2865–2877, https://doi.org/10.5194/amt-6-2865-2013, 2013.

3. Bauman, J. J., Russell, P. B., Geller, M. A., and Hamill, P.: A stratospheric aerosol climatology from SAGE II and CLAES measurements: 2. Results and comparisons, 1984–1999, J. Geophys. Res., 108, 4383, https://doi.org/10.1029/2002JD002993, 2003.

4. Bekki, S.: On the possible role of aircraft-generated soot in the middle latitude ozone depletion, J. Geophys. Res., 102, 10751–10758, 1997.

5. Bencherif, H., Portafaix, T., Baray, J. L., Morel, B., Baldy, S., Leveau and J., and Diab, R.: LIDAR observations of lower stratospheric aerosols over South Africa linked to large scale transport across the southern subtropical barrier, J. Atmos. Sol.-Terr. Phys., 65, 707–715, 2003.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3