Reply to: “Comment on ‘Stratospheric Aerosol Composition Observed by the Atmospheric Chemistry Experiment Following the 2019 Raikoke Eruption’ by Boone et al.” by Ansmann et al.

Author:

Boone C. D.1ORCID

Affiliation:

1. Department of Chemistry University of Waterloo Waterloo ON Canada

Abstract

AbstractThe question of stratospheric aerosol type following the Raikoke eruption is revisited. Raman lidar measurements suggest the aerosols are predominately smoke, while Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE‐FTS) results indicate the aerosols are predominately sulfate aerosols. The suggested mechanism of smoke particles self‐lofting into the stratosphere is inconsistent with observations in 2020, when more severe Siberian fires failed to invoke a response even vaguely similar to 2019. A side‐by side comparison of the Sarychev and Raikoke eruptions invalidates model calculations that suggest sulfate aerosols should be at levels too low to explain the observed aerosol loading. Structure in infrared absorption spectra provides conclusive evidence of composition, a unique fingerprint for identifying aerosol type. Such information cannot be misinterpreted so long as there is sufficient resolution and spectral coverage. ACE‐FTS infrared aerosol spectra often have an order of magnitude stronger absorption than that of background sulfate aerosols. These spectra can be accurately reproduced by laboratory measured sulfate aerosol spectroscopic information, providing unambiguous identification of the aerosols as sulfate. Visual inspection of thousands of infrared aerosol spectra from the period following the Raikoke eruption indicates the aerosols in the lower stratosphere are predominately sulfate, with no indication of smoke. The lidar study's identification of the aerosols as smoke was based primarily on observed lidar ratios that were more consistent with a material that absorbed significantly at the lidar wavelengths, inconsistent with expectations for sulfate aerosols. However, this could indicate the presence of a substance dissolved in the sulfate aerosols absorbing at those wavelengths rather than smoke particles.

Funder

Canadian Space Agency

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3