The CALIPSO version 4.5 stratospheric aerosol subtyping algorithm

Author:

Tackett Jason L.,Kar JayantaORCID,Vaughan Mark A.ORCID,Getzewich Brian J.ORCID,Kim Man-Hae,Vernier Jean-Paul,Omar Ali H.,Magill Brian E.,Pitts Michael C.ORCID,Winker David M.

Abstract

Abstract. The accurate classification of aerosol types injected into the stratosphere is important to properly characterize their chemical and radiative impacts within the Earth climate system. The updated stratospheric aerosol subtyping algorithm used in the version 4.5 (V4.5) release of the Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) level 2 data products now delivers more comprehensive and accurate classifications than its predecessor. The original algorithm identified four aerosol subtypes for layers detected above the tropopause: volcanic ash, smoke, sulfate/other, and polar stratospheric aerosol (PSA). In the revised algorithm, sulfates are separately identified as a distinct, homogeneous subtype, and the diffuse, weakly scattering layers previously assigned to the sulfate/other class are recategorized as a fifth “unclassified” subtype. By making two structural changes to the algorithm and revising two thresholds, the V4.5 algorithm improves the ability to discriminate between volcanic ash and smoke from pyrocumulonimbus injections, improves the fidelity of the sulfate subtype, and more accurately reflects the uncertainties inherent in the classification process. The 532 nm lidar ratio for volcanic ash was also revised to a value more consistent with the current state of knowledge. This paper briefly reviews the previous version of the algorithm (V4.1 and V4.2) then fully details the rationale and impact of the V4.5 changes on subtype classification frequency for specific events where the dominant aerosol type is known based on the literature. Classification accuracy is best for volcanic ash due to its characteristically high depolarization ratio. Smoke layers in the stratosphere are also classified with reasonable accuracy, though during the daytime a substantial fraction are misclassified as ash. It is also possible for mixtures of ash and sulfate to be misclassified as smoke. The V4.5 sulfate subtype accuracy is less than that for ash or smoke, with sulfates being misclassified as smoke about one-third of the time. However, because exceptionally tenuous layers are now assigned to the unclassified subtype and the revised algorithm levies more stringent criteria for identifying an aerosol as sulfate, it is more likely that layers labeled as this subtype are in fact sulfate compared to those assigned the sulfate/other classification in the previous data release.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference97 articles.

1. Allen, D. R., Fromm, M. D., Kablick III, G. P., and Nedoluha, G. E.: Smoke with Induced Rotation and Lofting (SWIRL) in the Stratosphere, J. Atmos. Sci., 77, 4297–4316, https://doi.org/10.1175/JAS-D-20-0131.1, 2020.

2. Andersson, S. M., Martinsson, B. G., Friberg, J., Brenninkmeijer, C. A. M., Rauthe-Schöch, A., Hermann, M., van Velthoven, P. F. J., and Zahn, A.: Composition and evolution of volcanic aerosol from eruptions of Kasatochi, Sarychev and Eyjafjallajökull in 2008–2010 based on CARIBIC observations, Atmos. Chem. Phys., 13, 1781–1796, https://doi.org/10.5194/acp-13-1781-2013, 2013.

3. Ansmann, A., Tesche, M., Groß, S., Freudenthaler, V., Seifert, P., Hiebsch, A., Schmidt, J., Wandinger, U., Mattis, I., Müller, D., and Wiegner, M.: The 16 April 2010 major volcanic ash plume over Central Europe: EARLINET lidar and AERONET photometer observations at Leipzig and Munich, Germany, Geophys. Res. Lett., 37, L13810, https://doi.org/10.1029/2010GL043809, 2010.

4. Ansmann, A., Baars, H., Chudnovsky, A., Mattis, I., Veselovskii, I., Haarig, M., Seifert, P., Engelmann, R., and Wandinger, U.: Extreme levels of Canadian wildfire smoke in the stratosphere over central Europe on 21–22 August 2017, Atmos. Chem. Phys., 18, 11831–11845, https://doi.org/10.5194/acp-18-11831-2018, 2018.

5. Ansmann, A., Ohneiser, K., Chudnovsky, A., Baars, H., and Engelmann, R.: CALIPSO aerosol-typing scheme misclassified stratospheric fire smoke: case study from the 2019 Siberian wildfire season, Front. Environ. Sci., 21, 769852, https://doi.org/10.3389/fenvs.2021.769852, 2021.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3