Tracking the Transport of SO2 and Sulphate Aerosols from the Tonga Volcanic Eruption to South Africa

Author:

Shikwambana Lerato12ORCID,Sivakumar Venkataraman34ORCID,Xongo Kanya1ORCID

Affiliation:

1. Earth Observation Directorate, South African National Space Agency, Pretoria 0001, South Africa

2. School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg 2050, South Africa

3. School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4041, South Africa

4. National Institute for Theoretical and Computational Sciences, University of KwaZulu Natal, Durban 4000, South Africa

Abstract

During a volcanic eruption, copious amounts of volcanic gas, aerosol droplets, and ash are released into the stratosphere, potentially impacting radiative feedback. One of the most significant volcanic gases emitted is sulphur dioxide, which can travel long distances and impact regions far from the source. This study aimed to investigate the transport of sulphur dioxide and sulphate aerosols from the Tonga volcanic eruption event, which occurred from the 13th to the 15th of January 2022. Various datasets, including Sentinel-5 Precursor (TROPOMI), the Ozone Monitoring Instrument (OMI), and the Ozone Mapping and Profiler Suite (OMPS), were utilized to observe the transport of these constituents. The TROPOMI data revealed westward-traveling SO2 plumes over Australia and the Indian Ocean towards Africa, eventually reaching the Republic of South Africa (RSA), as confirmed by ground-based monitoring stations of the South African Air Quality Information System (SAAQIS). Moreover, the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) demonstrated sulphate aerosols at heights ranging from 18 to 28 km with a plume thickness of 1 to 4 km. The results of this study demonstrate that multiple remote sensing datasets can effectively investigate the dispersion and long-range transport of volcanic constituents.

Funder

South African National Space Agency

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3