A new accurate low-cost instrument for fast synchronized spatial measurements of light spectra
-
Published:2023-08-14
Issue:15
Volume:16
Page:3767-3785
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Heusinkveld Bert G.ORCID, Mol Wouter B.ORCID, van Heerwaarden Chiel C.ORCID
Abstract
Abstract. We developed a cost-effective Fast-Response Optical Spectroscopy Time-synchronized instrument (FROST). FROST can measure 18 light spectra in 18 wavebands ranging from 400 to 950 nm with a 20 nm full-width half-maximum
bandwidth. The FROST 10 Hz measurement frequency is time-synchronized by a
global navigation satellite system (GNSS) timing pulse, and therefore
multiple instruments can be deployed to measure spatial variation in solar
radiation in perfect synchronization. We show that FROST is capable of
measuring global horizontal irradiance (GHI) despite its limited spectral
range. It is very capable of measuring photosynthetic active radiation (PAR)
because 11 of its 18 wavebands are situated within the 400-to-700 nm range. A digital filter can be applied to these 11 wavebands to derive the
photosynthetic photon flux density (PPFD) and retain information on the
spectral composition of PAR. The 940 nm waveband can be used to derive information about atmospheric
moisture. We showed that the silicon sensor has undetectable zero offsets for solar
irradiance settings and that the temperature dependency as tested in an oven between 15 and 46 ∘C appears very low (−250 ppm K−1). For solar irradiance applications, the main uncertainty is caused
by our polytetrafluoroethylene (PTFE) diffuser (Teflon), a common type of
diffuser material for cosine-corrected spectral measurements. The oven
experiments showed a significant jump in PTFE transmission of 2 % when
increasing its temperature beyond 21 ∘C. The FROST total cost (< EUR 200) is much lower than that of current
field spectroradiometers, PAR sensors, or pyranometers, and includes a
mounting tripod, solar power supply, data logger and GNSS, and waterproof
housing. FROST is a fully standalone measurement solution. It can be
deployed anywhere with its own power supply and can be installed in vertical in-canopy profiles as well. This low cost makes it feasible to study spatial
variation in solar irradiance using large-grid high-density sensor setups
or to use FROST to replace existing PAR sensors for detailed spectral
information.
Funder
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference21 articles.
1. Alados-Arboleda, L., Batles, F. J., and Olmo, F. J.: Solar radiation resource assessment by means of silicon cells, Sol. Energy, 54, 183–191, https://doi.org/10.1016/0038-092X(94)00116-U, 1995. 2. Boone, A., Bellvert, J., Best, M., Brooke, J., Canut-Rocafort, G., Cuxart,
J., Hartogensis, O., Le Moigne, P., Miró, J. R., Polcher, J., Price, J.,
Quintana Seguí, P., and Wooster, M.: Updates on the International Land
Surface Interactions with the Atmosphere over the Iberian Semi-Arid
Environment (LIAISE) Field Campaign, GEWEX News, 31, 17–21, 2021. 3. Cahalan, R. F., Oreopoulos, L., Marshak, A., Evans, K. F., Davis, A. B., Pincus, R., Yetzer, K. H., Mayer, B., Davies, R., Ackerman, T. P., Barker, H. W., Clothiaux, E. E., Ellingson, R. G., Garay, M. J., Kassianov, E., Kinne, S., Macke, A., O'hirok, W., Partain, P. T., Prigarin, S. M., Rublev, A. N.,
Stephens, G. L., Szczap, F., Takara, E. E., Wen, T. V. G., and Zhuravleva, T. B.: THE I3RC: Bringing Together the Most Advanced Radiative Transfer Tools for Cloudy Atmospheres, B. Am. Meteorol. Soc., 86, 1275–1293,
https://doi.org/10.1175/BAMS-86-9-1275, 2005. 4. Driemel, A., Augustine, J., Behrens, K., Colle, S., Cox, C., Cuevas-Agulló, E., Denn, F. M., Duprat, T., Fukuda, M., Grobe, H., Haeffelin, M., Hodges, G., Hyett, N., Ijima, O., Kallis, A., Knap, W., Kustov, V., Long, C. N., Longenecker, D., Lupi, A., Maturilli, M., Mimouni, M., Ntsangwane, L., Ogihara, H., Olano, X., Olefs, M., Omori, M., Passamani, L., Pereira, E. B., Schmithüsen, H., Schumacher, S., Sieger, R., Tamlyn, J., Vogt, R., Vuilleumier, L., Xia, X., Ohmura, A., and König-Langlo, G.: Baseline Surface Radiation Network (BSRN): structure and data description (1992–2017), Earth Syst. Sci. Data, 10, 1491–1501, https://doi.org/10.5194/essd-10-1491-2018, 2018. 5. Durand, M., Murchie, E. H., Lindfors, A. V., Urban, O., Aphalo, P. J., and Robson, M.: Diffuse solar radiation and canopy photosynthesis in a changing
environment, Agr. Forest Meteorol., 311, 108684,
https://doi.org/10.1016/j.agrformet.2021.108684, 2021.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|