CloudRoots-Amazon22: Integrating Clouds with Photosynthesis by Crossing Scales

Author:

Vilà-Guerau de Arellano J.12ORCID,Hartogensis O. K.1,de Boer H.3,Moonen R.4,González-Armas R.1,Janssens M.1,Adnew G. A.4,Bonell-Fontás D. J.4,Botía S.5,Jones S. P.6,van Asperen H.6,Komiya S.6,de Feiter V. S.1,Rikkers D.1,de Haas S.1,Machado L. A. T.78,Dias-Junior C. Q.9,Giovanelli-Haytzmann G.8,Valenti W. I. D.10,Figueiredo R. C.10,Farias C. S.10,Hall D. H.10,Mendonça A. C. S.10,da Silva F. A. G.7,Marton da Silva J. L.11,Souza R.12,Martins G.10,Miller J. N.13,Mol W. B.1,Heusinkveld B.1,van Heerwaarden C. C.1,D’Oliveira F. A. F.9,Rodrigues Ferreira R.14,Gotuzzo R. Acosta15,Pugliese G.2,Williams J.216,Ringsdorf A.2,Edtbauer A.2,Quesada C. A.10,Takeshi Tanaka Portela B.10,Gomes Alves E.6,Pöhlker C.8,Trumbore S.6,Lelieveld J.2,Röckmann T.4

Affiliation:

1. Meteorology and Air Quality Section, Wageningen University, Wageningen, Netherlands;

2. Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany;

3. Environmental Sciences, Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, Netherlands;

4. Institute Marine and Atmospheric Utrecht, Utrecht University, Utrecht, Netherlands;

5. Biogeochemical Signals Department, Max Planck Institute for Biogeochemistry, Jena, Germany;

6. Biogeochemical Processes Department, Max Planck Institute for Biogeochemistry, Jena, Germany;

7. Institute of Physics, University of São Paulo, São Paulo, Brazil;

8. Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany;

9. Physics Department (IFPA), Federal Institute of Pará, Belém, Pará, Brazil;

10. Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil;

11. Instituto Nacional de Pesquisas Espaciais, Cachoeira Paulista, Brazil;

12. Univerisidae do Estado do Amazonas, Manaus, Brazil;

13. NOAA/ESRL Global Monitoring, Boulder, Colorado;

14. Amazon Tall Tower Observatory, Program Large Scale Biosphere-Atmosphere in the Amazon (LBA), Manaus, Amazonas, Brazil;

15. Federal University of Rio Grande, Rio Grande, Brazil;

16. Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia, Cyprus

Abstract

Abstract How are rain forest photosynthesis and turbulent fluxes influenced by clouds? To what extent are clouds affected by local processes driven by rain forest energy, water, and carbon fluxes? These interrelated questions were the main drivers of the intensive field experiment CloudRoots-Amazon22 which took place at the Amazon Tall Tower Observatory (ATTO)/Campina supersites in the Amazon rain forest during the dry season, in August 2022. CloudRoots-Amazon22 collected observational data to derive cause–effect relationships between processes occurring at the leaf level up to canopy scales in relation to the diurnal evolution of the clear-to-cloudy transition. First, we studied the impact of cloud and canopy radiation perturbations on the subdiurnal variability of stomatal conductance. Stoma opening is larger in the morning, modulated by the cloud optical thickness. Second, we combined 1-Hz frequency measurements of the stable isotopologues of carbon dioxide and water vapor with measurements of turbulence to determine carbon dioxide and water vapor sources and sinks within the canopy. Using scintillometer observations, we inferred 1-min sensible heat flux that responded within minutes to the cloud passages. Third, collocated profiles of state variables and greenhouse gases enabled us to determine the role of clouds in vertical transport. We then inferred, using canopy and upper-atmospheric observations and a parameterization, the cloud cover and cloud mass flux to establish causality between canopy and cloud processes. This shows the need for a comprehensive observational set to improve weather and climate model representations. Our findings contribute to advance our knowledge of the coupling between cloudy boundary layers and primary carbon productivity of the Amazon rain forest.

Publisher

American Meteorological Society

Reference110 articles.

1. Leaf-scale quantification of the effect of photosynthetic gas exchange on δ17O atmospheric CO2;Adnew, G. A.,2020

2. Adnew, G. A., G. Koren, E. Melman, W. Peters, M. van, D. E. Molen, and T. Röckmann, 2022: Diurnal variation in the Δ′17O of atmospheric CO2 in the temperate scots pine forest ecosystem. Goldschmidt2022, Honolulu, HI, Geochemical Society and of the European Association of Geochemistry, Abstract 12047, https://doi.org/10.46427/gold2022.12047.

3. Midday boundary-layer collapse in the Altiplano desert: The combined effect of advection and subsidence;Aguirre-Correa, F.,2023

4. Model of the thermodynamic structure of the trade-wind boundary layer: Part I. Theoretical formulation and sensitivity tests;Albrecht, B. A.,1979

5. Fog and rain in the Amazon;Anber, U.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3