FESSTVaL: The Field Experiment on Submesoscale Spatio-Temporal Variability in Lindenberg

Author:

Hohenegger Cathy1,Ament Felix2,Beyrich Frank3,Löhnert Ulrich4,Rust Henning5,Bange Jens6,Böck Tobias7,Böttcher Christopher5,Boventer Jakob6,Burgemeister Finn8,Clemens Marco8,Detring Carola3,Detring Igor9,Dewani Noviana10,Duran Ivan Bastak10,Fiedler Stephanie4,Göber Martin11,van Heerwaarden Chiel12,Heusinkveld Bert12,Kirsch Bastian2,Klocke Daniel11,Knist Christine3,Lange Ingo8,Lauermann Felix3,Lehmann Volker3,Lehmke Jonas5,Leinweber Ronny3,Lundgren Kristina2,Masbou Matthieu13,Mauder Matthias14,Mol Wouter12,Nevermann Hannes15,Nomokonova Tatiana7,Päschke Eileen3,Platis Andreas6,Reichardt Jens3,Rochette Luc16,Sakradzija Mirjana11,Schlemmer Linda9,Schmidli Jürg10,Shokri Nima15,Sobottke Vincent5,Speidel Johannes17,Steinheuer Julian4,Turner David D.18,Vogelmann Hannes17,Wedemeyer Christian7,Weide-Luiz Eduardo4,Wiesner Sarah2,Wildmann Norman19,Wolz Kevin17,Wetz Tamino19

Affiliation:

1. Max Planck Institute for Meteorology, and Hans Ertel Centre for Weather Research, Hamburg, Germany;

2. Meteorological Institute, University of Hamburg, and Hans Ertel Centre for Weather Research, Hamburg, Germany;

3. Meteorological Observatory Lindenberg-Richard Aßmann Observatory, Deutscher Wetterdienst, Lindenberg, Germany;

4. Institute for Geophysics and Meteorology, University of Cologne, and Hans Ertel Centre for Weather Research, Cologne, Germany;

5. Institute for Meteorology, Freie Universität Berlin, and Hans Ertel Centre for Weather Research, Berlin, Germany;

6. Environmental Physics, GUZ, University of Tübingen, Tübingen, Germany;

7. Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany;

8. Meteorological Institute, University of Hamburg, Hamburg, Germany;

9. Deutscher Wetterdienst, Offenbach, Germany;

10. Faculty of Geosciences and Geography, Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, and Hans Ertel Centre for Weather Research, Frankfurt, Germany;

11. Hans Ertel Centre for Weather Research, Offenbach, Germany;

12. Meteorology and Air Quality Group, Wageningen University, Wageningen, Netherlands;

13. Deutscher Wetterdienst, and Hans Ertel Centre for Weather Research, Offenbach, Germany;

14. TU Dresden, Dresden, Germany;

15. Institute of Geo-Hydroinformatics, Hamburg University of Technology, Hamburg, Germany;

16. LR Tech Inc., Lévis, Quebec, Canada;

17. Institute of Meteorology and Climate Research–Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany;

18. NOAA/Global Systems Laboratory, Boulder, Colorado;

19. Institute of Atmospheric Physics, Deutsches Zentrum für Luft- und Raumfahrt e.V., Oberpfaffenhofen, Germany

Abstract

Abstract Numerical weather prediction models operate on grid spacings of a few kilometers, where deep convection begins to become resolvable. Around this scale, the emergence of coherent structures in the planetary boundary layer, often hypothesized to be caused by cold pools, forces the transition from shallow to deep convection. Yet, the kilometer-scale range is typically not resolved by standard surface operational measurement networks. The measurement campaign Field Experiment on Submesoscale Spatio-Temporal Variability in Lindenberg (FESSTVaL) aimed at addressing this gap by observing atmospheric variability at the hectometer-to-kilometer scale, with a particular emphasis on cold pools, wind gusts, and coherent patterns in the planetary boundary layer during summer. A unique feature was the distribution of 150 self-developed and low-cost instruments. More specifically, FESSTVaL included dense networks of 80 autonomous cold pool loggers, 19 weather stations, and 83 soil sensor systems, all installed in a rural region of 15-km radius in eastern Germany, as well as self-developed weather stations handed out to citizens. Boundary layer and upper-air observations were provided by eight Doppler lidars and four microwave radiometers distributed at three supersites; water vapor and temperature were also measured by advanced lidar systems and an infrared spectrometer; and rain was observed by a X-band radar. An uncrewed aircraft, multicopters, and a small radiometer network carried out additional measurements during a 4-week period. In this paper, we present FESSTVaL’s measurement strategy and show first observational results including unprecedented highly resolved spatiotemporal cold-pool structures, both in the horizontal as well as in the vertical dimension, associated with overpassing convective systems.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference57 articles.

1. The LITFASS project of DWD and the LITFASS-98 experiment: The project strategy and the experimental setup;Beyrich, F.,2002

2. Influence of the subcloud layer on the development of a deep convective ensemble;Böing, S. J.,2012

3. The Oklahoma Mesonet: A technical overview;Brock, F. V.,1995

4. Burgemeister, F., M. Clemens, and F. Ament, 2022: Rainfall rates estimated from X-Band radar observations during FESSTVaL 2021. Universität Hamburg, accessed 1 April 2023, https://doi.org/10.25592/uhhfdm.10090.

5. Fine-scale analysis of a severe hailstorm using crowd-sourced and conventional observations;Clark, M. R.,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3