Performance evaluation of MeteoTracker mobile sensor for outdoor applications
-
Published:2024-05-29
Issue:10
Volume:17
Page:3255-3278
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Barbano FrancescoORCID, Brattich ErikaORCID, Cintolesi CarloORCID, Ghafoor Nizamani Abdul, Di Sabatino SilvanaORCID, Milelli Massimo, Peerlings Esther E. M.ORCID, Polder Sjoerd, Steeneveld Gert-JanORCID, Parodi Antonio
Abstract
Abstract. The morphological complexity of urban environments results in a high spatial and temporal variability of the urban microclimate. The consequent demand for high-resolution atmospheric data remains a challenge for atmospheric research and operational application. The recent widespread availability and increasing adoption of low-cost mobile sensing offer the opportunity to integrate observations from conventional monitoring networks with microclimatic and air pollution data at a finer spatial and temporal scale. So far, the relatively low quality of the measurements and outdoor performance compared to conventional instrumentation has discouraged the full deployment of mobile sensors for routine monitoring. The present study addresses the performance of a commercial mobile sensor, the MeteoTracker (IoTopon Srl), recently launched on the market to quantify the microclimatic characteristics of the outdoor environment. The sensor follows the philosophy of the Internet of Things technology, being low cost, having an automatic data flow via personal smartphones and online data sharing, supporting user-friendly software, and having the potential to be deployed in large quantities. In this paper, the outdoor performance is evaluated through tests aimed at quantifying (i) the intra-sensor variability under similar atmospheric conditions and (ii) the outdoor accuracy compared to a reference weather station under sub-optimal (in a fixed location) and optimal (mobile) sensor usage. Data-driven corrections are developed and successfully applied to improve the MeteoTracker data quality. In particular, a recursive method for the simultaneous improvement of relative humidity, dew point, and humidex index proves to be crucial for increasing the data quality. The results mark an intra-sensor variability of approximately ± 0.5 °C for air temperature and ± 1.2 % for the corrected relative humidity, both of which are within the declared sensor accuracy. The sensor captures the same atmospheric variability as the reference sensor during both fixed and mobile tests, showing positive biases (overestimation) for both variables. Through the mobile test, the outdoor accuracy is observed to be between ± 0.3 to ± 0.5 °C for air temperature and between ± 3 % and ± 5 % for the relative humidity, ranking the MeteoTracker in the real accuracy range of similar commercial sensors from the literature and making it a valid solution for atmospheric monitoring.
Publisher
Copernicus GmbH
Reference64 articles.
1. Acosta, M. P., Vahdatikhaki, F., Santos, J., and Doree, A.: A framework for a comprehensive mobile data acquisition setting for the assessment of Urban Heat Island phenomenon, in: ISARC, Proceedings of the International Symposium on Automation and Robotics in Construction, Vol. 39, 1–8, IAARC Publications, https://doi.org/10.22260/ISARC2022/0003, 2022. a 2. Alduchov, O. A. and Eskridge, R. E.: Improved Magnus form approximation of saturation vapor pressure, J. Appl. Meteorol. Climatol., 35, 601–609, 1996. a 3. Barbano, F., Di Sabatino, S., Stoll, R., and Pardyjak, E. R.: A numerical study of the impact of vegetation on mean and turbulence fields in a European-city neighbourhood, Build. Environ., 186, 107293, https://doi.org/10.1016/j.buildenv.2020.107293, 2020. a 4. Barbano, F., Brattich, E., and Di Sabatino, S.: Characteristic scales for turbulent exchange processes in a real urban canopy, Bound.-Lay. Meteorol., 178, 119–142, 2021. a 5. Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and Wood, E. F.: Present and future Köppen-Geiger climate classification maps at 1-km resolution, Sci. Data, 5, 1–12, 2018. a
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|