Land surface Interactions with the Atmosphere over the Iberian Semi-arid Environment (LIAISE) Project: Overview of the Field Campaign intense phase

Author:

Boone Aaron,Best Martin,Bellvert Joaquim,Brooke JenniferORCID,Canut-Rocafort Guylaine,Cuxart Joan,Hartogensis OscarORCID,Ramon Miro Josep,LeMoigne Patrick,Polcher Jan,Price Jeremy,Quintana Segui PereORCID

Abstract

<p>It is known that irrigation can impact the local atmospheric boundary layer characteristics, thereby modifying near surface atmospheric conditions within and downwind of irrigated areas and potentially the recycling of precipitation. The understanding of the impact of anthropization and its representation in models have been inhibited due to a lack of consistent and extensive observations, but in recent years, land surface and atmospheric observation capabilities have advanced. The overall objective of the Land surface Interactions with the Atmosphere over the Iberian Semi-arid Environment (LIAISE) project is to improve the understanding and prediction of land-atmosphere-hydrology interactions in a semi-arid region characterized by strong surface heterogeneity between the natural landscape and intensive agriculture. The study region is located over the Pla d’Urgell region within the Ebro basin in NE Spain. This area was selected since it is a breadbasket region: there are discussions underway to further expand this irrigated zone owing to its economic importance, but consensus of current climate projections predicts a significant warming and drying over this region in upcoming years. Thus there is an urgent need to improve the prediction of the potential changes to the regional water cycle since water resources are limited.</p><p> </p><p>Here we present an overview of the intense phase of the LIAISE observational campaign, which is part of the HYdrological cycles in the Mediterranean Experiment (HyMeX) phase 2, that took place in July, 2021 when land surface heterogeneity was at a maximum. A network of 7 stations provided continuous measurements of the surface energy and water budget components for multiple representative land cover types, including irrigated surfaces, along with detailed surface biophysical measurements from the leaf to field scale. Surface fluxes at the field scale were made using scintillometer configurations over 3 of the sites. Lower atmospheric measurements were obtained from tethered balloons, lidar, UHF profilers, frequent radio-sounding releases, UAVs and several aircraft. Finally, airborne instruments measured solar induced florescence, surface temperature over several spectral bands and soil moisture over a transect cutting across the rain-fed and irrigated areas. The main outcome of this project is to provide the underpinnings for improved models leading to better water resource impact studies for both the present and under future climate change.</p>

Publisher

Copernicus GmbH

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3