CALOTRITON: a convective boundary layer height estimation algorithm from ultra-high-frequency (UHF) wind profiler data

Author:

Philibert Alban,Lothon Marie,Amestoy Julien,Meslin Pierre-Yves,Derrien SolèneORCID,Bezombes Yannick,Campistron Bernard,Lohou FabienneORCID,Vial Antoine,Canut-Rocafort Guylaine,Reuder JoachimORCID,Brooke Jennifer K.ORCID

Abstract

Abstract. Long time series of observations of atmospheric dynamics and composition are collected at the French Pyrenean Platform for Observation of the Atmosphere (P2OA). Planetary boundary layer depth is a key variable of the climate system, but it remains difficult to estimate and analyse statistically. In order to obtain reliable estimates of the convective boundary layer height (Zi) and to allow long-term series analyses, a new restitution algorithm, named CALOTRITON, has been developed. It is based on the observations of an ultra-high-frequency (UHF) radar wind profiler (RWP) from P2OA with the help of other instruments for evaluation. Estimates of Zi are based on the principle that the top of the convective boundary layer is associated with both a marked inversion and a decrease in turbulence. Those two criteria are respectively manifested by larger RWP reflectivity and smaller vertical-velocity Doppler spectral width. With this in mind, we introduce a new UHF-deduced dimensionless parameter which weighs the air refractive index structure coefficient with the inverse of vertical velocity standard deviation to the power of x. We then search for the most appropriate local maxima of this parameter for Zi estimates with defined criteria and constraints such as temporal continuity. Given that Zi should correspond to fair-weather cloud base height, we use ceilometer data to optimize our choice of the power x and find that x=3 provides the best comparisons. The estimates of Zi by CALOTRITON are evaluated using different Zi estimates deduced from radiosounding according to different definitions. The comparison shows excellent results with a regression coefficient of up to 0.96 and a root-mean-square error of 71 m, which is close to the vertical resolution of the UHF RWP of 75 m, when conditions are optimal. In more complex situations, that is when the atmospheric vertical structure is itself particularly ambiguous, secondary retrievals allow us to identify potential thermal internal boundary layers or residual layers and help to qualify the Zi estimations. Frequent estimate errors are observed nevertheless; for example, when Zi is below the UHF RWP first reliable gate or when the boundary layer begins its transition to a stable nocturnal boundary layer.

Funder

Commissariat à l'Énergie Atomique et aux Énergies Alternatives

Université Toulouse III - Paul Sabatier

Centre National de la Recherche Scientifique

Institut national des sciences de l'Univers

European Cooperation in Science and Technology

Agence Nationale de la Recherche

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3