Affiliation:
1. Rensselaer Polytechnic Institute
2. General Electric Global Research Center
Abstract
We have studied capacitance mode Deep Level Transient Spectroscopy (DLTS) of five 4H-SiC Schottky diode and PiN diode designs. Comparing with previous DLTS studies, we have identified four traps levels, Z1/2, EH1, EH3and EH5. Additionally, a new trap level, EH1, is prominent in blanket Al+and B+high-energy implanted samples but less so in mask-implanted samples. Al+implantation increases EH3(associated with silicon vacancy) and EH5, while B+implantation significantly reduces EH3. The Z1/2peak (associated with carbon vacancy) is reduced to very low levels after B+and Al+implantation.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献