Affiliation:
1. U.S. Naval Research Laboratory
2. Carnegie Mellon University
Abstract
The effectiveness of an in-situ growth interrupt in nitrogen doped 8° off-cut epilayers was investigated using ultraviolet photoluminescence imaging. Low-doped n-type epilayers (<1016 cm-3) exhibited an abrupt increase in BPD to TED conversion at the growth interrupt and achieved 96-99% conversion overall (< 10 BPDs/cm-2), while high-doped epilayers had minimal conversion at the interrupt (< 1%) and overall (< 30%). This large discrepancy suggests nitrogen prohibits or alters the conversion mechanism at the growth interrupt. Therefore, a novel SEM technique was developed to "freeze-in" the interface morphology and help elucidate the conversion mechanism. Preliminary results suggest that preferential etching at the point of BPD intersection with the surface is greatly reduced in highly doped layers, which inhibits the conversion mechanism.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献