Investigation of Common Source Amplifier Circuit using Gate Stack-Based GAA Dopingless Nanowire Field Effect Transistor

Author:

Solay Leo RajORCID,Kumar Pradeep,Amin S. IntekhabORCID,Anand Sunny

Abstract

Reported work demonstrates the application of common source amplifier circuit using the proposed Gate Stack based Gate All Around Dopingless Nanowire Field Effect Transistor (GS GAA DL NW—FET) structure. Primarily, impact of the gate stack (GS) technique on the conventional Gate All Around Dopingless Nanowire Field Effect Transistor (GAA DL NW—FET) structure is explored. The proposed FET structure resulted in excellent electrostatic control over the channel by incorporating the advantages of GAA architectures and dopingless technique. As transfer characteristics of conventional GAA DL NW—FET have been enhanced with gate stack (SiO2 + high k) technique when employed at dielectric region. A contrast is drawn between both structures in terms of analog parametric analysis which resulted in improved ION of 30.6 (μA), reduced IOFF of 10−7 (μA) and enhanced ION/IOFF of 6.7 × 107. Linearity analysis were made to examine the distortion less digital communication and a fair comparison is depicted between the structures. CS amplifier circuit application with proposed GS GAA DL NW—FET resulted in improved VOUT with 15.2 dB of gain when compared with GAA DL NW—FET based CS amplifier which stood at 13.9 dB which proves the promising candidature for forthcoming nanoscale circuit applications.

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

Reference39 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3