A Global Quasigeostrophic Diagnosis of Extratropical Extreme Precipitation

Author:

Dai Panxi1,Nie Ji1

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Abstract

AbstractThis paper presents a global picture of the dynamic processes and synoptic characteristics of extratropical extreme precipitation events (EPEs), defined as annual maximum daily precipitation averaged over 7.5° × 7.5° regional boxes. Based on the quasigeostrophic omega equation, extreme precipitation can be decomposed into components forced by large-scale adiabatic disturbances and amplified by diabatic heating feedback. The spatial distribution of the diabatic feedback parameter is largely controlled by atmospheric precipitable water and captured by a simple model. Most spatial heterogeneities of EPEs in the middle and high latitudes are due to the spatial variations of large-scale adiabatic forcing. The adiabatic component includes the processes of vorticity advection, in which the synoptic vorticity advection by background wind dominates; temperature advection, in which the total meridional temperature advection by synoptic wind dominates; and boundary forcing. The synoptic patterns of EPEs in all extratropical regions can be classified into six clusters using the self-organizing map method: two clusters in low latitudes and four clusters in middle and high latitudes. Synoptic disturbances are characterized by strong pressure anomalies throughout the troposphere over the coastal regions and oceans and feature upper-level shortwave disturbances and a large westward tilt with height over land. Synoptic configurations favor moisture transport from ocean to land over coastal regions.

Funder

National Natural Science Foundation of China

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3