Patterns of Wintertime Jet Stream Variability and Their Relation to the Storm Tracks*

Author:

Athanasiadis Panos J.1,Wallace John M.1,Wettstein Justin J.2

Affiliation:

1. Department of Atmospheric Sciences, University of Washington, Seattle, Washington

2. Bjerknes Centre for Climate Research, Bergen, Norway

Abstract

Abstract A new approach is put forward for defining extratropical teleconnection patterns. The zonal wind field at 250 hPa is analyzed separately in the North Atlantic and North Pacific Ocean sectors during the winter season (December–March). Teleconnectivity of this field is found to be particularly strong. EOF analysis of the zonal wind field yields patterns that (i) are robust with respect to the range of frequencies included in the data, (ii) relate clearly to the position of the climatological-mean jets, and (iii) are broadly consistent with their traditionally defined counterparts in terms of climatic impacts. The patterns are characterized by a north–south shifting or an extension/retraction of the eddy-driven jet in its exit region and similar changes at the entrance region of the subtropical jet. The patterns also reflect the degree of separation between the subtropical and eddy-driven jets. Atlantic EOFs 1 and 2 are counterparts of the North Atlantic Oscillation (NAO) and eastern Atlantic pattern, respectively, while Pacific EOF 1 is the counterpart of the Pacific–North America (PNA) pattern. Pacific EOF 2, a pattern that has not been previously noted, has a pronounced impact on the jet configuration and precipitation over the western coast of North America. This pattern may be of particular interest for precipitation forecasting applications. Atlantic EOF 1 exhibits a long decorrelation time and strong negative skewness. The relation between these jet variability patterns and the storm-track variability is examined, including the dynamical interaction between baroclinic waves and the jets. In each sector, the eddy forcing is found to maintain the respective jet anomalies.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3