Coupling Physical Factors for Precipitation Forecast in China With Graph Neural Network

Author:

Chen Yutong123ORCID,Wang Ya1ORCID,Huang Gang123ORCID,Tian Qun4

Affiliation:

1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics Institute of Atmospheric Physics Chinese Academy of Sciences Beijing China

2. Laboratory for Regional Oceanography and Numerical Modeling Qingdao National Laboratory for Marine Science and Technology Qingdao China

3. College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing China

4. Guangzhou Institute of Tropical and Marine Meteorology/Guangdong Provincial Key Laboratory of Regional Numerical Weather Prediction CMA Guangzhou China

Abstract

AbstractPrecipitation exerts far‐reaching impacts on both socio‐economic fabric and individual well‐being, necessitating concerted efforts in accurate forecasting. Deep learning (DL) models have increasingly demonstrated their prowess in forecasting meteorological elements. However, traditional DL prediction models often grapple with heavy rainfall forecasting. In this study, we propose physics‐informed localized graph neural network models called ω‐GNN and ω‐EGNN, constrained by the coupling of physical variables and climatological background to predict precipitation in China. These models exhibit notable and robust improvements in identifying heavy rainfall while maintaining excellent performance in forecasting light rain by comparing to numerical weather prediction (NWP) and other DL models with multiple perturbation experiments in different data sets. Surprisingly, within a certain range, even when a DL model utilizes more input variables, GNN can still maintain its advantage. The methods to fuse physics into DL model demonstrated in this study may be promising and call for future studies.

Publisher

American Geophysical Union (AGU)

Reference52 articles.

1. The quiet revolution of numerical weather prediction

2. Bi K. Xie L. Zhang H. Chen X. Gu X. &Tian Q.(2022).Pangu‐weather: A 3D high‐resolution model for fast and accurate global weather forecast.https://doi.org/10.48550/arXiv.2211.02556

3. Chen Z. Chen F. Zhang L. Ji T. Fu K. Zhao L. et al. (2020).Bridging the gap between spatial and spectral domains: A survey on graph neural networks (Version 4).arXiv.https://doi.org/10.48550/ARXIV.2002.11867

4. Convection-permitting models: a step-change in rainfall forecasting

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3