Seasonal and Geographical Variations in Fundamental Weather Patterns during Extreme Precipitation as Identified from Omega Equation Forcing

Author:

Swenson Leif M.1ORCID,Grotjahn Richard1

Affiliation:

1. a Atmospheric Science Program, Department of Land, Air, and Water Resources, University of California, Davis, Davis, California

Abstract

Abstract We investigate the large-scale weather patterns during extreme precipitation (PEx) events over the conterminous United States (CONUS) by applying a version of the quasigeostrophic (QG) omega equation. This work aims to develop a climatology of the weather patterns most related to PEx events during current climate. Extreme events are examined for each of seven regions defined by consistent annual cycles of precipitation and spanning the CONUS. For the CONUS we train several self-organizing maps (SOM) on a pressure–time series of vertical velocity from each of the advective forcing terms in the QG omega equation for each extreme event. The unsupervised learning of the SOM allows us to identify the most descriptive set of nine patterns in vertical velocity associated with precipitation extremes. This method finds multiple frontal- and cyclone-driven patterns while grouping primarily convective events into one pattern. Frontal events include a synoptic pattern consistent with West Coast atmospheric river events as well as pattern groups linked to developing and to mature (“occluded”) frontal cyclones. The primary patterns found during PEx events vary seasonally and geographically. Frontal cyclone patterns are most common during PEx events during summer in the part of the Great Plains and during winter for the Northeast, Southeast, Pacific Northwest, and Southwest. Convection is the most common pattern during summer in all regions. Except in the Southeast, the annual cycles of monthly number of PEx events and average precipitation match well, partially validating our choice of regions to aggregate PEx events.

Funder

Biological and Environmental Research

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference39 articles.

1. Dynamical analysis of extreme precipitation in the US Northeast based on large-scale meteorological patterns;Agel, L.,2019

2. The minimum length scale for evaluating QG omega using high-resolution model data;Battalio, M.,2017

3. The importance of fronts for extreme precipitation;Catto, J. L.,2013

4. Relating global precipitation to atmospheric fronts;Catto, J. L.,2012

5. Large-scale influences on atmospheric river–induced extreme precipitation events along the coast of Washington State;Collow, A. B. M.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3