How Well Does the ERA5 Reanalysis Capture the Extreme Climate Events Over China? Part I: Extreme Precipitation

Author:

Lei Xiangyong,Xu Wanling,Chen Shiting,Yu Tingting,Hu Zengyun,Zhang Meng,Jiang Lizhi,Bao Ruijuan,Guan Xiaojun,Ma Miaomiao,Wei Jianhui,Feng Aixia,Gao Lu

Abstract

ERA5 is the fifth-generation atmospheric reanalysis of the European Center for Medium-Range Weather Forecasts, with high spatiotemporal resolution and global coverage. However, the reliability of ERA5 for simulating extreme precipitation events is still unclear over China. In this study, 12 extreme precipitation indices and a comprehensive quantitative distance between indices of simulation and observation were used to evaluate ERA5 precipitation from three fundamental aspects: intensity, frequency, and duration. The geomorphological regionalization method was used to divide the subregions of China. The results showed that the ability of ERA5 to simulate annual total precipitation was better than that of daily precipitation. For the intensity indices, ERA5 performs well for simulating the PRCPTOT (annual total wet days precipitation) over China. ERA5 performs better on RX5day (max 5-days precipitation amount) and R95p (very wet days), especially in eastern China, than on RX1day (max 1-day precipitation amount) and R99p (extremely wet days). For the frequency indices, the ability of the ERA5 simulation increased as the amount of precipitation increased, except for northwestern China. However, the ability of ERA5 to simulate R50 mm (number of extreme heavy precipitation days) decreased. For the duration indices, ERA5 was better at simulating drought events than wet events in eastern China. Our results highlight the need for ERA5 to enhance the simulation of trend changes in extreme precipitation events.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3