Cellobiose Consumption Uncouples Extracellular Glucose Sensing and Glucose Metabolism in Saccharomyces cerevisiae

Author:

Chomvong Kulika1,Benjamin Daniel I.2,Nomura Daniel K.2,Cate Jamie H. D.345

Affiliation:

1. Department of Plant and Microbial Biology, University of California, Berkeley, California, USA

2. Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, USA

3. Department of Molecular and Cell Biology, University of California, Berkeley, California, USA

4. Department of Chemistry, University of California, Berkeley, California, USA

5. Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA

Abstract

ABSTRACT Glycolysis is central to energy metabolism in most organisms and is highly regulated to enable optimal growth. In the yeast Saccharomyces cerevisiae , feedback mechanisms that control flux through glycolysis span transcriptional control to metabolite levels in the cell. Using a cellobiose consumption pathway, we decoupled glucose sensing from carbon utilization, revealing new modular layers of control that induce ATP consumption to drive rapid carbon fermentation. Alterations of the beta subunit of phosphofructokinase-1 ( PFK2 ), H + -plasma membrane ATPase ( PMA1 ), and glucose sensors ( SNF3 and RGT2 ) revealed the importance of coupling extracellular glucose sensing to manage ATP levels in the cell. Controlling the upper bound of cellular ATP levels may be a general mechanism used to regulate energy levels in cells, via a regulatory network that can be uncoupled from ATP concentrations under perceived starvation conditions. IMPORTANCE Living cells are fine-tuned through evolution to thrive in their native environments. Genome alterations to create organisms for specific biotechnological applications may result in unexpected and undesired phenotypes. We used a minimal synthetic biological system in the yeast Saccharomyces cerevisiae as a platform to reveal novel connections between carbon sensing, starvation conditions, and energy homeostasis.

Funder

HHS | National Institutes of Health

Energy Biosciences Institute

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3