Neither 1G nor 2G fuel ethanol: setting the ground for a sugarcane-based biorefinery using an iSUCCELL yeast platform

Author:

Bermejo Pamela Magalí1,Raghavendran Vijayendran2,Gombert Andreas Karoly1ORCID

Affiliation:

1. School of Food Engineering, University of Campinas, Campinas, SP 13083-862, Brazil

2. Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK

Abstract

Abstract First-generation (1G) fuel ethanol production in sugarcane-based biorefineries is an established economic enterprise in Brazil. Second-generation (2G) fuel ethanol from lignocellulosic materials, though extensively investigated, is currently facing severe difficulties to become economically viable. Some of the challenges inherent to these processes could be resolved by efficiently separating and partially hydrolysing the cellulosic fraction of the lignocellulosic materials into the disaccharide cellobiose. Here, we propose an alternative biorefinery, where the sucrose-rich stream from the 1G process is mixed with a cellobiose-rich stream in the fermentation step. The advantages of mixing are 3-fold: (i) decreased concentrations of metabolic inhibitors that are typically produced during pretreatment and hydrolysis of lignocellulosic materials; (ii) decreased cooling times after enzymatic hydrolysis prior to fermentation; and (iii) decreased availability of free glucose for contaminating microorganisms and undesired glucose repression effects. The iSUCCELL platform will be built upon the robust Saccharomyces cerevisiae strains currently present in 1G biorefineries, which offer competitive advantage in non-aseptic environments, and into which intracellular hydrolyses of sucrose and cellobiose will be engineered. It is expected that high yields of ethanol can be achieved in a process with cell recycling, lower contamination levels and decreased antibiotic use, when compared to current 2G technologies.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,General Medicine,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3