Glucose assimilation rate determines the partition of flux at pyruvate between lactic acid and ethanol in Saccharomyces cerevisiae

Author:

Lane Stephan1,Turner Timothy L.2,Jin Yong‐Su12

Affiliation:

1. Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana‐Champaign Urbana Illinois USA

2. Department of Food Science and Human Nutrition University of Illinois at Urbana‐Champaign Urbana Illinois USA

Abstract

AbstractEngineered Saccharomyces cerevisiae expressing a lactic acid dehydrogenase can metabolize pyruvate into lactic acid. However, three pyruvate decarboxylase (PDC) isozymes drive most carbon flux toward ethanol rather than lactic acid. Deletion of endogenous PDCs will eliminate ethanol production, but the resulting strain suffers from C2 auxotrophy and struggles to complete a fermentation. Engineered yeast assimilating xylose or cellobiose produce lactic acid rather than ethanol as a major product without the deletion of any PDC genes. We report here that sugar flux, but not sensing, contributes to the partition of flux at the pyruvate branch point in S. cerevisiae expressing the Rhizopus oryzae lactic acid dehydrogenase (LdhA). While the membrane glucose sensors Snf3 and Rgt2 did not play any direct role in the option of predominant product, the sugar assimilation rate was strongly correlated to the partition of flux at pyruvate: fast sugar assimilation favors ethanol production while slow sugar assimilation favors lactic acid. Applying this knowledge, we created an engineered yeast capable of simultaneously converting glucose and xylose into lactic acid, increasing lactic acid production to approximately 17 g L−1 from the 12 g L−1 observed during sequential consumption of sugars. This work elucidates the carbon source‐dependent effects on product selection in engineered yeast.

Publisher

Wiley

Subject

Molecular Medicine,Applied Microbiology and Biotechnology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3