Engineering of Ogataea polymorpha strains with ability for high-temperature alcoholic fermentation of cellobiose

Author:

Vasylyshyn Roksolana12ORCID,Dmytruk Olena12ORCID,Sybirnyy Andriy12ORCID,Ruchała Justyna12ORCID

Affiliation:

1. Institute of Biotechnology, College of Natural Sciences, University of Rzeszow , Cwiklinskiej 2D Street, 35-601 Rzeszow , Poland

2. Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAN of Ukraine , Drahomanov Street 14/16, 79005 Lviv , Ukraine

Abstract

Abstract Successful conversion of cellulosic biomass into biofuels requires organisms capable of efficiently utilizing xylose as well as cellodextrins and glucose. Ogataea (Hansenula) polymorpha is the natural xylose-metabolizing organism and is one of the most thermotolerant yeasts known, with a maximum growth temperature above 50°C. Cellobiose-fermenting strains, derivatives of an improved ethanol producer from xylose O. polymorpha BEP/cat8∆, were constructed in this work by the introduction of heterologous genes encoding cellodextrin transporters (CDTs) and intracellular enzymes (β-glucosidase or cellobiose phosphorylase) that hydrolyze cellobiose. For this purpose, the genes gh1-1 of β-glucosidase, CDT-1m and CDT-2m of cellodextrin transporters from Neurospora crassa and the CBP gene coding for cellobiose phosphorylase from Saccharophagus degradans, were successfully expressed in O. polymorpha. Through metabolic engineering and mutagenesis, strains BEP/cat8∆/gh1-1/CDT-1m and BEP/cat8∆/CBP-1/CDT-2mAM were developed, showing improved parameters for high-temperature alcoholic fermentation of cellobiose. The study highlights the need for further optimization to enhance ethanol yields and elucidate cellobiose metabolism intricacies in O. polymorpha yeast. This is the first report of the successful development of stable methylotrophic thermotolerant strains of O. polymorpha capable of coutilizing cellobiose, glucose, and xylose under high-temperature alcoholic fermentation conditions at 45°C.

Funder

National Science Centre

H2020 Marie Skłodowska-Curie Actions

Simons Foundation

Publisher

Oxford University Press (OUP)

Reference56 articles.

1. Lignocellulosic biomass for bioethanol: an overview on pretreatment, hydrolysis and fermentation processes;Abo;Rev Environ Health,2019

2. Molecular cloning and expression of fungal cellobiose transporters and β-glucosidases conferring efficient cellobiose fermentation in Saccharomyces cerevisiae;Bae;J Biotechnol,2014

3. Mutagenesis;Barbour;Methods Mol Biol,2006

4. Consortia modulation of the stress response: proteomic analysis of single strain versus mixed culture [published correction appears in Environ Microbiol. 2010 Sep;12(9):2626-31. Timmis, Kenneth N [removed]];Bobadilla Fazzini;Environ Microbiol,2010

5. Bioethanol production from renewable raw materials and its separation and purification: a review;Bušić;Food Technol Biotechnol,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3