Viable but Nonculturable and Persister Cells Coexist Stochastically and Are Induced by Human Serum

Author:

Ayrapetyan M.1,Williams T. C.1,Baxter R.1,Oliver J. D.1

Affiliation:

1. Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA

Abstract

ABSTRACT Dormancy holds a vital role in the ecological dynamics of microorganisms. Specifically, entry into dormancy allows cells to withstand times of stress while maintaining the potential for reentry into an active existence. The viable but nonculturable (VBNC) state and antibiotic persistence are two well-recognized conditions of dormancy demonstrated to contribute to bacterial stress tolerance and, as a consequence, yield populations that are tolerant to high-dose antibiotics. Aside from this commonality, more evidence is being presented that indicates the relatedness of these two states. Here, we demonstrate that VBNC cells are present during persister isolation experiments, further indicating that these cells coexist and are induced by the same conditions. Interestingly, we reveal that VBNC cells can exist stochastically in unstressed growing cultures, a finding that is characteristic of persisters. Furthermore, human serum induces the formation of both VBNC cells and persisters, a finding not previously described for either dormancy state. Lastly, we describe the role of toxin-antitoxin systems (TAS) in the induction of the VBNC state and report that these TAS, which are classically implicated in persister cell formation, are also induced during incubation in human serum. This study provides evidence for the recently proposed “dormancy continuum hypothesis” and substantiates the physical and molecular relatedness of VBNC and persister cells in a standardized model organism. Notably, these results provide new evidence for the clinical significance of VBNC and persister cells.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3