A review of thermoreflectance techniques for characterizing wide bandgap semiconductors’ thermal properties and devices’ temperatures

Author:

Yuan Chao12ORCID,Hanus Riley1ORCID,Graham Samuel1ORCID

Affiliation:

1. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

2. The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China

Abstract

Thermoreflectance-based techniques, such as pump–probe thermoreflectance (pump–probe TR) and thermoreflectance thermal imaging (TTI), have emerged as the powerful and versatile tools for the characterization of wide bandgap (WBG) and ultrawide bandgap (UWBG) semiconductor thermal transport properties and device temperatures, respectively. This Review begins with the basic principles and standard implementations of pump–probe TR and TTI techniques, illustrating that when analyzing WBG and UWBG materials or devices with pump–probe TR or TTI, a metal thin-film layer is often required. Due to the transparency of the semiconductor layers to light sources with sub-bandgap energies, these measurements directly on semiconductors with bandgaps larger than 3 eV remain challenging. This Review then summarizes the general applications of pump–probe TR and TTI techniques for characterizing WBG and UWBG materials and devices where thin metals are utilized, followed by introducing more advanced approaches to conventional pump–probe TR and TTI methods, which achieve the direct characterizations of thermal properties on GaN-based materials and the channel temperature on GaN-based devices without the use of thin-film metals. Discussions on these techniques show that they provide more accurate results and rapid feedback and would ideally be used as a monitoring tool during manufacturing. Finally, this Review concludes with a summary that discusses the current limitations and proposes some directions for future development.

Funder

National Natural Science Foundation of China

Science and Technology Department of Hubei Province

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3