Comprehensive interpretations of thermodynamic and kinetic effects on the phase fractions in Hf1-xZrxO2 by first principle calculations

Author:

Ye Kun Hee12ORCID,Yeu In Won1ORCID,Han Gyuseung12ORCID,Jeong Taeyoung12ORCID,Yoon Seungjae12ORCID,Kim Dohyun12ORCID,Hwang Cheol Seong2ORCID,Choi Jung-Hae1ORCID

Affiliation:

1. Electronic Materials Research Center, Korea Institute of Science and Technology 1 , Seoul 02792, South Korea

2. Department of Materials Science and Engineering and Inter-University Semiconductor Research Center, Seoul National University 2 , Seoul 08826, South Korea

Abstract

Phase control in Hf1-xZrxO2 (HZO) is crucial for optimizing its electrical properties, such as ferroelectricity and high dielectricity. However, phase optimization in HZO has remained challenging due to limited theoretical understanding. This work devised an atomistic methodology based on density functional theory calculations to predict the phase fractions in HZO. The detailed phase evolution and phase fractions during the sequential processes of crystallization, annealing, and cooling were predicted by calculating the nucleation barrier from amorphous, the transition barrier between polymorphs, and Boltzmann fractions, considering the combined effects of composition (x), grain size (dT), and annealing temperature (Tannealing). The findings revealed that the polar orthorhombic (PO) phase exhibited the highest fraction at Tannealing = 770 K in Hf0.5Zr0.5O2, resulting in maximum ferroelectricity. Meanwhile, the fractions of PO and tetragonal phases are similar at dT = 7 nm in Hf0.4Zr0.6O2 and dT = 11 nm in Hf0.3Zr0.7O2, both at Tannealing = 770 K, leading to the highest dielectricity. These results are highly consistent with the experimental results. This work demonstrates that the comprehensive interpretations of both thermodynamic and kinetic effects are essential for quantitatively predicting the phase fraction and their corresponding electrical functionality.

Funder

National Research Foundation of Korea

Next Generation Intelligence Semiconductor Foundation

Institutional Research Program of Korea Institute of Science and Technology

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3