Near-zero-field magnetoresistance measurements: A simple method to track atomic-scale defects involved in metal-oxide-semiconductor device reliability

Author:

Moxim Stephen J.1ORCID,Sharov Fedor V.1ORCID,Hughart David R.2ORCID,Haase Gaddi S.2,McKay Colin G.2ORCID,Frantz Elias B.3,Lenhan Patrick M.1ORCID

Affiliation:

1. Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

2. Sandia National Laboratories, Albuquerque, New Mexico 87123, USA

3. Intel Corporation, Hillsboro, Oregon 97124, USA

Abstract

We demonstrate the ability of a relatively new analytical technique, near-zero-field magnetoresistance (NZFMR), to track atomic-scale phenomena involved in the high-field stressing damage of fully processed Si metal-oxide-semiconductor field-effect transistors. We show that the technique is sensitive to both the Pb0 and Pb1 dangling bond centers and that the presence of both centers can be inferred through NZFMR via hyperfine interactions with the central 29Si atoms of the dangling bonds. The NZFMR results also provide evidence for the redistribution of mobile hydrogen atoms at the Si/SiO2 interface and also a potential change in the average dipolar coupling constant between electrons in neighboring defects. This work shows that NZFMR offers significant analytical power for studying technologically relevant semiconductor device reliability problems and has advantages in experimental simplicity over comparable techniques.

Funder

Sandia National Laboratories

Defense Threat Reduction Agency

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tunable zero-field magnetoresistance responses in Si transistors: Origins and applications;Journal of Applied Physics;2024-04-16

2. Near Zero Field Magnetoresistance Spectroscopy: A New Tool in Semiconductor Reliability Physics;2023 IEEE International Reliability Physics Symposium (IRPS);2023-03

3. Electrically Detected Magnetic Resonance Study of High-Field Stressing in SiOC:H Films;2022 IEEE International Integrated Reliability Workshop (IIRW);2022-10-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3