Mg-implanted vertical GaN junction barrier Schottky rectifiers with low on resistance, low turn-on voltage, and nearly ideal nondestructive breakdown voltage

Author:

Matys Maciej1ORCID,Kitagawa Kazuki2,Narita Tetsuo3ORCID,Uesugi Tsutomu1,Suda Jun12ORCID,Kachi Tetsu1ORCID

Affiliation:

1. IMaSS Nagoya University, Nagoya 464-8601, Japan

2. Department of Electronics, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan

3. Toyota Central R&D Labs., Inc., Nagakute, Aichi 480-1192, Japan

Abstract

Vertical GaN junction barrier Schottky (JBS) diodes with superior electrical characteristics and nondestructive breakdown were realized using selective-area p-type doping via Mg ion implantation and subsequent ultra-high-pressure annealing. Mg-ion implantation was performed into a 10  μm thick Si-doped GaN drift layer grown on a free-standing n-type GaN substrate. We fabricated the JBS diodes with different n-type GaN channel widths Ln = 1 and 1.5  μm. The JBS diodes, depending on Ln, exhibited on-resistance ( RON) between 0.57 and 0.67 mΩ cm2, which is a record low value for vertical GaN Schottky barrier diodes (SBDs) and high breakdown (BV) between 660 and 675 V (84.4% of the ideal parallel plane BV). The obtained low RON of JBS diodes can be well explained in terms of the RON model, which includes n-type GaN channel resistance, spreading current effect, and substrate resistance. The reverse leakage current in JBS diodes was relatively low 103–104 times lower than in GaN SBDs. In addition, the JBS diode with lower Ln exhibited the leakage current significantly smaller (up to reverse bias 300 V) than in the JBS diode with large Ln, which was explained in terms of the reduced electric field near the Schottky interface. Furthermore, the JBS diodes showed a very high current density of 5.5 kA/cm2, a low turn-on voltage of 0.74 V, and no destruction against the rapid increase in the reverse current approximately by two orders of magnitude. This work demonstrated that GaN JBS diodes can be strong candidates for low loss power switching applications.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3