Pt/GaN Schottky Barrier Height Lowering by Incorporated Hydrogen

Author:

Irokawa YoshihiroORCID,Ohi Akihiko,Nabatame Toshihide,Koide Yasuo

Abstract

Changes in the hydrogen-induced Schottky barrier height (Φ B) of Pt/GaN rectifiers fabricated on free-standing GaN substrates were investigated using current–voltage, capacitance–voltage, impedance spectroscopy, and current–time measurements. Ambient hydrogen lowered the Φ B and reduced the resistance of the semiconductor space–charge region while only weakly affecting the ideality factor, carrier concentration, and capacitance of the semiconductor space–charge region. The changes in the Φ B were reversible; specifically, the decrease in Φ B upon hydrogen exposure occurred quickly, but the recovery was slow. The results also showed that exposure to dry air and/or the application of a reverse bias to the Schottky electrodes accelerated the reversion compared with the case without the applied bias. The former case resulted in fast reversion because of the catalytic effect of Pt. The latter case, by contrast, suggested that hydrogen was incorporated into the Pt/GaN interface oxides as positive mobile charges. Moreover, both exposure to dry air and the application of a reverse bias increased the Φ B of an as-loaded sample from 0.91 to 1.07 eV, revealing that the Φ B of Pt/GaN rectifiers was kept lower as a result of hydrogen incorporation that likely occurred during device processing and/or storage.

Funder

Japan Society for the Promotion of Science

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3